19/08/21 11:54:35.81 exMypExf.net
>>575
> 5 100本の数列のどの列にも最大のdは存在しないから不可能。
ここも、かなり正しいです
分かりにくいと思うが
素朴に
自然数Nで、ある数aが、ある有限の定数nより小さい確率
P(a<n)=0
となることに近い
つまり、確率的に言えば、自然数N中の「ある数a」というのは「零集合」(下記ご参照)です
”a<n”の部分も、自然数N中の「零集合」です
上記では、自然数N中に元の自然数は1つずつ一様分布していると考えるのが普通です
で、時枝ではどうでしょうか?
これは、>>487に書きましたが
決定番号dをもつ代表数列の候補の数は、dが大きくなれば、指数関数的に発散します(^^
ですので、決定番号d 有限の候補の集合は、問題の数列の同値類の集合から見て、「零集合」です
なので、”決定番号d 有限の候補の集合”の議論というのは、「零集合」の内部の議論をしていることになります(^^;
(「零集合」の内部で、dに最大値があるのないのと議論する、そして確率99/100だと導くこと(それを数学の証明とすること)が、おかしいのですw(^^; )
(参考)
URLリンク(www.ne.jp)
V-3. 面積ゼロ,negligible,零集合
定義:negligible set
[Lang, Undergraduate Analysis, pp.473-474.;杉浦『解析入門I』IV章§9 命題9.1.b(pp.262-263.)]