19/08/20 23:21:27.41 FmpY0/8E.net
>>545
つづき
Indeed, we can say something stronger: the set S is not a measurable set, and consequently Pr(p < q) is not defined.
If it were, then the conditions for applying Fubini’s Theorem would be satisfied.
We could compute the measure of S by iterated integrals and it would not matter whether we used horizontal or vertical cross-sections.
These two ways of computing the integral would give the same result.
We know that they do not: The measure of each vertical cross-section is 0, while the measure of each horizontal cross-section is 1. Hence, S is not measurable.7
URLリンク(ja.wikipedia.org)
フビニの定理
数学においてフビニの定理(フビニのていり、英: Fubini's theorem)とは、Guido Fubini (1907) によって導入された、逐次積分による二重積分の計算が可能となるための条件に関する一結果である。すなわち、次のような計算が可能となる。
この結果、積分の順序(英語版)は逐次積分において変えることが可能となる。フビニの定理は、ある二変数函数が可積分であれば、上記のような二回の繰り返しの積分は等しいことを意味する。Leonida Tonelli (1909) によって導入されたトネリの定理(Tonelli's theorem)も同様のものであるが、その定理が適用される函数は可積分ではなくとも非負であればよい。
空間が σ-有限でないなら、フビニの定理が成立しないような異なる積測度が存在する可能性もある。例えば、ある積測度と非負可測函数 f に対して、|f| の二重積分はゼロとなるが二つの逐次積分は異なる値となることが起こり得る(後述の、反例に関する節を参照)。
反例
次の例では、フビニの定理およびトネリの定理のいくつかの仮定が満たされないとき、どのようにして定理が成立しないかを示す。
非可測函数に対してフビニの定理が成立しないこと
たとえ |f| が可積分でいずれの逐次積分が well-defined であっても、非可測であればフビニの定理が成立しないことがある
つづく