現代数学の系譜 工学物理雑談 古典ガロア理論も読む75at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 - 暇つぶし2ch564:132人目の素数さん
19/08/20 19:36:01.21 7640BXpe.net
>>510
>確率論からthe Continuum Hypothesisの不成立を主張したんだ
誤り
確率論の他に、Symmetryに関する前提を使用している
で、要はThe Brown-Freiling double dart throwの
集合S = {(p, q)/p, q 、 [0, 1] and p < q}
が下記の理由により非可測だといっている
p6
"we can say something stronger:
the set S is not a measurable set, and consequently Pr(p < q) is not defined.
If it were, then the conditions for applying Fubini’s Theorem would be satisfied.
We could compute the measure of S by iterated integrals and
it would not matter whether we used horizontal or vertical cross-sections.
These two ways of computing the integral would give the same result.
We know that they do not:
The measure of each vertical cross-section is 0,
while the measure of each horizontal cross-section is 1.
Hence, S is not measurable."
フビニの定理、知ってるか?w

565:132人目の素数さん
19/08/20 19:41:06.98 7640BXpe.net
>>514
>ある数Dを決めた後、自然数N中から、ランダムに数D’を取り出すと
>”D’>D”となる確率は1
>”D’<D”となる確率は0
この在阪朝鮮人の計算は
「99列を定数とし選んだ1列だけを確率変数とする」
という点でNG
在京日本人の計算
「100列を定数とし、どの列を選ぶかだけが確率変数」
これが時枝記事の計算

566:132人目の素数さん
19/08/20 19:58:37.64 hwdrxP6m.net
>>526
>>527
> このような場合でもd=7と決定できる、
> かのように時枝が書いているから意味不明なのである。
それは数列や決定番号を1つしか見ていないから

100列あったとしてランダムに1つ選んだ数列が以下の状態を満たしているとする
> s=1、3、7、8、5、6、□、2、0、4、3、3、……
> r=3、3、4、8、6、4、9、2、0、4、3、3、……
> d=?
dの候補は7か8であることは確定
残りの99列の決定番号の最大値が7であるから(これは残りの99列の箱を全て開けて確認済み)
選んだ数列(上のs)の7番目を開けずに残したわけだ
つまり100個ある決定番号からランダムに1つ選んだら
残りの99個の最大値以下であろうと推測しているだけだ
(もちろん推測が外れることもある)

567:132人目の素数さん
19/08/20 20:50:15.81 R69QbOCe.net
ok

568:132人目の素数さん
19/08/20 21:10:16.90 hTUmVSnh.net
>>507
× 今日もしっかり踊ってね by サル回しのスレ主より(^^;
〇 今日もしっかり踊ってね by サル畜生のスレ主より(^^;

569:132人目の素数さん
19/08/20 21:27:44.74 hTUmVSnh.net
>>508
>100人が宝くじを1枚買いました
>1等賞からは、全員外れです。当然ありうる
>1等賞の確率が、極めて低い場合はね
それ、なんの例えにもなってないんだが(^^;
100列のうち決定番号が他のどの列よりも大きい列が複数存在することはあり得ない
こんな簡単なことも分からないとは、さては工業高校卒もウソだな(^^;
サイコパスは平気で嘘を吐くからなあ(^^;

570:132人目の素数さん
19/08/20 21:46:03.78 hTUmVSnh.net
>>514
3年半かかってそれかよ(^^;
呆れるほどレベル低っ(^^;

571:132人目の素数さん
19/08/20 21:52:31.05 hTUmVSnh.net
>>514
>要するに、自然数Nには最大値がないので
>ある数Dを決めた後、自然数N中から、ランダムに数D’を取り出すと
>”D’>D”となる確率は1
>”D’<D”となる確率は0
>(等号成立は、無視できるとして)
>となります
時枝解法とはなんの関係も無い話乙w
時枝解法は出題者が数列を固定し、100列が固定され、100個の決定番号が固定される。
そのうち単独最大はたかだか1個でそれを選んだ時だけ数当て失敗。
自然数に上限が無いとか何の関係も無いw
こんな簡単な理屈が3年半かかって理解できないとはw 
サル知恵しか持たないサル畜生に数学は無理w

572:哀れな素人
19/08/20 22:04:02.61 JinqNl0A.net
>>531
意味不明(笑
>dの候補は7か8であることは確定
それは正しいが、時枝はd=7であると
決定できるかのように書いている。
というのは時枝は各列に決定番号は
一つであるかのように書いているからだ。
>残りの99列の決定番号の最大値が7であるから
どの列にも決定番号の最大値などはない(笑
>残りの99個の最大値以下であろうと推測
だからそれは間違いで
残りの99個の最大値以下か以上のどちらかであって
どちらの確率も1/2なのである(笑

573:哀れな素人
19/08/20 22:17:46.61 JinqNl0A.net
100本の数列のどの列にも完全代表元r
などは存在しないのである。
いいかえれば100本の数列のどの列にも
最大の決定番号dなどは存在しない。
それは>>473を見れば明白だ(笑
だから時枝戦略は成立しないのである。
>いま D >= d(s^k) を仮定しよう.
>この仮定が正しい確率は99/100
これは間違いで1/2である(笑
但しD = d(s^k)の場合は無視する(笑

574:哀れな素人
19/08/20 22:28:25.20 JinqNl0A.net
それにそもそも
s=1、3、7、8、5、6、9、2、0、4、3、3、……
これが箱を開けずに残した最後の数列だとして、
この数列は他の99本の数列とは
まったく何の関係もないのだから、
他の99本の数列や決定番号の情報など
何の役にも立たないのである(笑
それにそもそも同値類の全パターンが用意できるなら、
100本の数列に分けたりしなくても当てられるのである(笑
なぜなら全パターンが用意されているのだから(笑

575:132人目の素数さん
19/08/20 22:37:56.18 hwdrxP6m.net
>>537
> どの列にも決定番号の最大値などはない(笑
残りの99列は箱を開けて中身を見てるから値が確定している状態だ
ex.
ある列の決定番号が100であった -- 最小値は100で最大値は100
2列の決定番号がそれぞれ99と100であった -- 2つの内で最小値は99で最大値は100
> 残りの99個の最大値以下か以上のどちらかであって
> どちらの確率も1/2なのである(笑
1から100までの自然数から1つ選んだ場合(100通りある)
100が残りの99個の最大値であるのが99通り(100以外を選んだ場合)
99が残りの99個の最大値であるのが1通り(100を選んだ場合)
>>538
100列で100人が異なる列を1つずつ選んだ場合を考えれば1/2が間違いであることは分かるでしょ
>>539
> 全パターンが用意されているのだから(笑
1列だけだとどこからパターンの適用ができるかが分からないんだよね

576:哀れな素人
19/08/20 22:47:48.78 JinqNl0A.net
>>540
意味不明(笑
どの列にも最大の決定番号などないことは>>473で明白(笑
D >d(s^k) の確率は1/2である(笑
同値類の全パターンを用意するということは
実数列の全パターンを用意することと同じなのである(笑
だから実数列の全パターンが用意できるなら
100本に分けたりしなくても当てられる(笑

577:哀れな素人
19/08/20 23:04:36.97 JinqNl0A.net
11時を過ぎたから、今夜はここまで(笑

578:132人目の素数さん
19/08/20 23:12:32.74 hTUmVSnh.net
>>521
>4)つまり、”sD+1, sD+2,sD+3,・・・”で、その数列s の属する同値類が決められます
>  ですが、実は、”sD+a+1, sD+a+2,sD+a+3,・・・”で良いのです
>  aは、1億でも1兆でも、100兆でも、任意の10^nでいくらでも大きなnで良いのです
>  デタラメでしょw(^^
>5)例えば、100兆とすれば、100兆の箱の数が、しかも任意の実数を入れたのに、的中できるなんてw
ローレベルピープル乙w
「商射影 R^N→ R^N/~の切断を選んだ」の意味がまるで分かってないw
∀D∈N、∀a1,∀a2,...,∀aD∈R、∀s∈R^N のとき
s':=a1,a2,...,aD,s(D+1),s(D+2),...~s である。
よって商射影 f の切断 g が定義されているなら g(f(s'))=r(s) となる。
ローレベルピープルに数学は無理w

579:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/20 23:20:01.35 FmpY0/8E.net
おサルさん、元気だね
しっかり踊れよ by サル回しのスレ主よりw(^^

580:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/20 23:20:30.19 FmpY0/8E.net
>>528
>>確率論からthe Continuum Hypothesisの不成立を主張したんだ
>誤り
おサルは、なにを誤読しているのかな?w(^^
”確率論からthe Continuum Hypothesisの不成立を主張した”のは、
論敵のBrown&Freiling両氏で、
それに対し
筆者のPaul Bartha氏が、”3. Critique of the Argument”で両氏を批判しているんだ
Paul Bartha氏の批判は
”確率論の他に、Symmetryに関する前提を使用している”
が、しかし”非可測”
で、フビニの定理が不成立だから、「Symmetry不成立!」だということ
で、mathoverflowのAlexander Pruss氏は
Paul Bartha氏の論文引用によって、
mathoverflowのRiddleのModification版(確率の計算)(=時枝記事に相当)
に対して、
”Denisは、安易に、Symmetryに頼りすぎで、おまえ「Symmetry成立は(非可測で)未証明」だぞ”と
批判しているんだ(^^
URLリンク(www.mdpi.com)
Symmetry 2011, 3(3), 636-652
Symmetry and the Brown-Freiling Refutation of the Continuum Hypothesis
Paul Bartha
(抜粋)
3. Critique of the Argument
It is easy to be misled by the fact that each vertical cross-section Sq has one-dimensional measure 0.
Indeed, that suggests that the two-dimensional measure of S must be 0, by appeal to Fubini’s Theorem, which tells us how to compute iterated integrals ‘by slices’.
However, it is not obvious that the requirements for the application of Fubini’s Theorem are met in our example.
つづく

581:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/20 23:21:27.41 FmpY0/8E.net
>>545
つづき
Indeed, we can say something stronger: the set S is not a measurable set, and consequently Pr(p < q) is not defined.
If it were, then the conditions for applying Fubini’s Theorem would be satisfied.
We could compute the measure of S by iterated integrals and it would not matter whether we used horizontal or vertical cross-sections.
These two ways of computing the integral would give the same result.
We know that they do not: The measure of each vertical cross-section is 0, while the measure of each horizontal cross-section is 1. Hence, S is not measurable.7
URLリンク(ja.wikipedia.org)
フビニの定理
数学においてフビニの定理(フビニのていり、英: Fubini's theorem)とは、Guido Fubini (1907) によって導入された、逐次積分による二重積分の計算が可能となるための条件に関する一結果である。すなわち、次のような計算が可能となる。
この結果、積分の順序(英語版)は逐次積分において変えることが可能となる。フビニの定理は、ある二変数函数が可積分であれば、上記のような二回の繰り返しの積分は等しいことを意味する。Leonida Tonelli (1909) によって導入されたトネリの定理(Tonelli's theorem)も同様のものであるが、その定理が適用される函数は可積分ではなくとも非負であればよい。
空間が σ-有限でないなら、フビニの定理が成立しないような異なる積測度が存在する可能性もある。例えば、ある積測度と非負可測函数 f に対して、|f| の二重積分はゼロとなるが二つの逐次積分は異なる値となることが起こり得る(後述の、反例に関する節を参照)。
反例
次の例では、フビニの定理およびトネリの定理のいくつかの仮定が満たされないとき、どのようにして定理が成立しないかを示す。
非可測函数に対してフビニの定理が成立しないこと
たとえ |f| が可積分でいずれの逐次積分が well-defined であっても、非可測であればフビニの定理が成立しないことがある
つづく

582:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/20 23:21:42.62 FmpY0/8E.net
つづき
非可積分函数に対してフビニの定理が成立しないこと
絶対値の積分は有限であるという仮定は、ルベーグ可積分性であり、この仮定が無いと二つの逐次積分は異なる値を取り得る。

URLリンク(mathoverflow.net)
Probabilities in a riddle involving axiom of choice Dec 9 '13
 (抜粋)
(Alexander Pruss氏)
<12>
The probabilistic reasoning depends on a conglomerability assumption・・
But we have no reason to think the event of guessing correctly is measurable with respect to the probability measure induced by the random choice of sequence and index i, and we have no reason to think that the conglomerability assumption is appropriate.
A quick way to see that the conglomerability assumption is going to be dubious is to consider the analogy of the Brown-Freiling argument against the Continuum Hypothesis (see here for a discussion).
URLリンク(www.mdpi.com)
(引用終り)
以上

583:132人目の素数さん
19/08/20 23:21:53.28 hTUmVSnh.net
>>523 >>525
意味不明過ぎて草しか生えない

584:132人目の素数さん
19/08/20 23:22:50.16 hTUmVSnh.net
>>544
× しっかり踊れよ by サル回しのスレ主よりw(^^
〇 しっかり踊れよ by サル畜生のスレ主よりw(^^

585:132人目の素数さん
19/08/20 23:25:57.07 hTUmVSnh.net
>>523
>3)ここも、時枝記事のゴマカシ(手品のタネ)です
そう思うのはサル畜生が同値類を分かってないからw
>aは、1億でも1兆でも、100兆でも、任意の10^nでいくらでも大きなnで良いのです
なにを自明なことをw

586:132人目の素数さん
19/08/20 23:26:27.20 hTUmVSnh.net
>>524
嘘吐きサイコパス乙

587:132人目の素数さん
19/08/20 23:36:44.54 hTUmVSnh.net
>>541
>どの列にも最大の決定番号などないことは>>473で明白(笑
決定番号は定義により自然数である。
自然数からなる有限集合は最大値を持つ。
よって100個の決定番号の集合{d1,...,d100} はmaxを持つ。

588:132人目の素数さん
19/08/20 23:44:07.63 hTUmVSnh.net
サル畜生は「幾何的には商射影 R^N→ R^N/~の切断を選んだことになる. 」が分かってませんでした。
だから「時枝記事はゴマカシ」などとタワケタことを口走って赤っ恥をかくw

589:132人目の素数さん
19/08/21 01:20:08.45 gd17c+7u.net
モンティホール問題
ドアの変更または非変更により得られる景品数の変化をGとする。
①当たりドアを選んでいた場合(確率=1/3)、ドア変更により必ず外れるのでG=-1
②ハズレドアを選んでいた場合(確率=2/3)、ドア変更により必ず当たるのでG=1
①、②よりドア変更によるGの期待値=1/3
一方ドアを変更しない場合のGの期待値は0であるから、ドアを変更すべきである。

590:132人目の素数さん
19/08/21 06:21:40.18 SfXTc3qP.net
>>545
>しかし”非可測” で、フビニの定理が不成立だから

しかしフビニの定理が成立しておらず”非可測”だから
が正しい
>「Symmetry不成立!」
そこから「確率0」は導けない
100列が確率変数の場合、非可測だから確率は未定 これが答え

591:132人目の素数さん
19/08/21 06:41:51.64 SfXTc3qP.net
>>546-547
何が言いたいのか不明
箱の中身が0もしくは1なら、
無限列の全体は{0,1}^Nであるから
全体が1となる測度を設定できる
その上で、「決定番号がnになる数列の全体の集合」は
ヴィタリ集合の場合と同様の方法で非可測が証明できる
したがって、数列を確率変数とする場合は
そもそも逐次積分自体が不能であり、確率が不定
し・か・し、そもそも時枝問題は数列を確率変数としていない
したがって非可測性による異議申し立ては無意味
そして非可測性を持ち出した時点で
「当たる確率0」の主張も正当化できない
(100列のうち選択列だけを確率変数とする
 姑息な技を弄しても、そもそも目的の集合が
 非可測だから測度0とはいえない)

592:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/21 07:02:41.42 6H2tIaYx.net
>>509-より)
>>505>>470
おサルは、全然論文が読めてない
(引用開始)
Pruss、
"Symmetry and Brown-Freiling Refutation of the Continuum Hypothesis"
にて曰く
(引用終り)
(>>301より)
URLリンク(mathoverflow.net)
Probabilities in a riddle involving axiom of choice Dec 9 '13
 (抜粋)
(Alexander Pruss氏)
A quick way to see that the conglomerability assumption is going to be dubious is to consider the analogy of the Brown-Freiling argument against the Continuum Hypothesis (see here for a discussion).
URLリンク(www.mdpi.com)
だけど、URLリンク(www.mdpi.com) は、著者 Paul Bartha氏で
”Department of Philosophy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada”
Pruss氏自身の論文ではない
論文の要約としては
1.Freiling [1] and Brown [2] さんが、
 ”put forward a probabilistic reductio argument intended to refute the Continuum Hypothesis. ”
 ということで、確率論からthe Continuum Hypothesisの不成立を主張したんだ
2.筆者のPaul Bartha氏は、”This paper argues that the argument fails, but is still


593: of interest for two reasons.”  で、議論は間違っているけど、2つの点で面白いという(この論文のキモ) 3.で、”(iii)Symmetry. Brown writes [2]: ”で  “The independence and randomness of the darts guarantees the symmetry of the throws.  Consequently, either dart may be considered the first throw.”  Brown means: In determining the probability of any outcome for the darts taken singly or as a pair, we may freely suppose that either dart is the first throw.”  ってところ(dartsわかるよね矢を投げるゲームで) ”the symmetry of the throws”を使っているけど、ここを批判している 4.この批判が、Pruss氏がこの論文を引いたキモで、時枝の決定番号大小比較の議論(直観的な「大小比較」はダメダメ)に関係しているんだな つづく



594:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/21 07:03:08.47 6H2tIaYx.net
>>557
つづき
それで直観について補足すると下記
(PDFでP642)
Yet two puzzles remain. First: why do we not have Pr(p < q) = 1/2, given the symmetry of the
set-up? Despite the mathematical argument above, the intuition that p < q and q < p are equiprobable
remains strong. What should we say about this intuition? Freiling appears to think we should give such
intuitions priority. He writes (in a slightly different context) that his argument [1] depends upon
a principle
...not meant to be a mathematical statement of the Lebesgue measurability of a certain type of
set. Rather, it is an expression of an obvious, almost physical intuition concerning the
inherently nonmathematical notions of prediction, accuracy, and time independence.
Yet an appeal to symmetry, where we cannot produce a coherent mathematical model, is unreliable,
as we know from the many paradoxes associated with the Principle of Insufficient Reason.
ってところ
これが、きっと、Pruss氏が、この論文を引用した理由で
>>157より)
Denis
I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}
が、Pruss氏は「それDenisの直観でしかない」ということよ(^^;
つづく

595:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/21 07:03:32.06 6H2tIaYx.net
>>558
つづき
これ、過去、確率論の専門家さん( ID:f9oaWn8A)が来訪して、ほぼ同じことを指摘している(下記)
スレ74 スレリンク(math板:65番)-
522 132人目の素数さん 投麹e日2016/07/03(日)ID:f9oaWn8A
面倒だから二列で考えると
Y=(X_1,X_3,X_5,…)とZ=(X_2,X_4,X_6,…)独立同分布
実数列x=(x_1,x_2,…)から最大番号を与える関数をh(x)とすると
P(h(Y)>h(Z))=1/2であれば嬉しい.
hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明
528 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A
おれが問題視してるのはの可測性
正確にかくために確率空間(Ω,F,P)を設定しよう
Y,Zはそれぞれ(Ω,F)から(R^N,B(R^N))の可測関数である.
もしhが(R^N,B(R^N))から(N,2^N)への可測関数ならば
h(Y),h(Z)はそれぞれ可測関数となって{ω|h(Y(ω))>h(Z(ω)}∈FとなりP({ω|h(Y(ω))>h(Z(ω)})=1/2となるけど
hが(R^N,B(R^N))から(N,2^N)への可測関数とは正直


596:思えない 532 返信132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A >>530 >2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ 残念だけどこれが非自明. hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう (引用終り) 以上



597:132人目の素数さん
19/08/21 07:11:06.58 SfXTc3qP.net
>>557
>確率論からthe Continuum Hypothesisの不成立を主張
BrowmとFreilingの主張としても誤り
>”the symmetry of the throws”…ここを批判している
そしてスレ主のいう「オレの計算順序では確率0」も否定している
(そもそも時枝記事の場合、積測度以前の段階で非可測だから確率0も導けない)

598:132人目の素数さん
19/08/21 07:12:29.73 SfXTc3qP.net
>Denis
>I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}
>が、Pruss氏は「それDenisの直観でしかない」ということよ
スレ主の直感は、非可測性によって否定される
Prussも(引用論文で)全面的に賛同wwwwwww
スレ主、まさかのPrussに爆殺
wwwwwwwwwwwwww

599:132人目の素数さん
19/08/21 07:15:58.73 SfXTc3qP.net
>>560
>確率論の専門家( ID:f9oaWn8A)
は非可測性によりスレ主の主張「確率0」も否定している
一方我々は彼がいう「数列空間の測度」は不必要
と述べているから彼の異議申し立ては却下される
結論:スレ主 まさかの専門家に単独爆殺wwwwwww

600:132人目の素数さん
19/08/21 07:17:22.50 SfXTc3qP.net
>>560
>確率論の専門家( ID:f9oaWn8A)
は非可測性によりスレ主の主張「確率0」も否定している
一方我々は彼がいう「数列空間の測度」は不必要
と述べているから彼の異議申し立ては却下される
結論:スレ主 まさかの専門家に単独爆殺wwwwwww

601:132人目の素数さん
19/08/21 07:21:29.61 SfXTc3qP.net
スレ主が自分の主張を正当化するために
可算加法性を有限加法性に緩和したところで
今度はFubiniの定理の有限加法版によって
非可測とされてしまう
結局主張は正当化されないwwwwwww

602:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/21 07:22:54.24 6H2tIaYx.net
>>541
哀れな素人さん、どうも。スレ主です。
>だから実数列の全パターンが用意できるなら
> 100本に分けたりしなくても当てられる(笑
それある意味正しいわ(^^
要するに、時枝は
1)数列のしっぽの同値類で、しっぽの先の方の箱を開ければ、同値類が決定できる
2)同値類から、代表と決定番号dが決まる
3)d<nなる十分大きな数nをとって、n+1から先の箱を全部開ける
4)nを十分大きくとれば、
 決定番号の定義から
 d,d+1,d+2,・・・,nの箱の数と、代表の数列の該当部分の数が一致している・・はず
という理屈なんだね
ところが、これがゴマカシ(手品のタネ)です
ここらを批判しているのが、>>557-559のPruss氏と確率論の専門家さんの”d_Xとd_Yの可測性が保証されない”ってところです

603:132人目の素数さん
19/08/21 07:30:20.59 SfXTc3qP.net
>>565
>1)数列のしっぽの同値類で、しっぽの先の方の箱を開ければ、同値類が決定できる
これ否定するのは尻尾の同値類が理解できない馬鹿だけw
>2)同値類から、代表と決定番号dが決まる
これ否定するのは選択公理が理解できない馬鹿だけw
>3)d<nなる十分大きな数nをとって、n+1から先の箱を全部開ける
>4)nを十分大きくとれば、
 決定番号の定義から
 d,d+1,d+2,・・・,nの箱の数と、代表の数列の該当部分の数が一致している・・はず
d<nであれば、決定番号の定義から、必ず
 d,d+1,d+2,・・・,nの箱の数と、代表の数列の該当部分の数が一致している
否定するヤツは尻尾の同値関係が理解できない馬鹿w
>Pruss氏と確率論の専門家さんの”d_Xとd_Yの可測性が保証されない”
誤 可測性が保証されない
正 可測でない
そもそも
「自然数nについて、決定番号dがnより小さい列」
の全体の集合が非可測なので、可測性に固執する限り
当たらないという主張も正当化できません
スレ主、Prussと専門家に爆殺wwwwwww

604:132人目の素数さん
19/08/21 07:31:15.43 SfXTc3qP.net
スレ主は可測性で自爆wwwwwww
馬鹿だねぇwwwwwww

605:132人目の素数さん
19/08/21 07:35:10.84 SfXTc3qP.net
>>だから実数列の全パターンが用意できるなら
>> 100本に分けたりしなくても当てられる(笑
>それある意味正しいわ
スレ主は順序が理解できない超馬鹿w
2列以上の場合
「他の列より大きい決定番号をもつ列」
はたかだか1個
この小学生でもわかる順序の初等的性質こそがポイント
これがどうしても理解できないスレ主は数学が全然分からん超馬鹿w

606:132人目の素数さん
19/08/21 07:35:49.00 SfXTc3qP.net
>>565
>>だから実数列の全パターンが用意できるなら
>> 100本に分けたりしなくても当てられる(笑
>それある意味正しいわ
スレ主は順序が理解できない超馬鹿w
2列以上の場合
「他の列より大きい決定番号をもつ列」
はたかだか1個
この小学生でもわかる順序の初等的性質こそがポイント
これがどうしても理解できないスレ主は数学が全然分からん超馬鹿w

607:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/21 07:45:36.97 6H2tIaYx.net
>>526-527
哀れな素人さん、どうも。スレ主です。
(引用開始)
s=1、3、7、8、5、6、□、2、0、4、3、3、……
r=3、3、4、8、6、4、9、2、0、4、3、3、……
d=?
このような場合でもd=7と決定できる、
かのように時枝が書いているから意味不明なのである。
(引用終り)
いや、この場合、「d<=7」が、他の数列との比較から、
ある確率で推測できるというのが、時枝の主張です
(説明の都合上、d→d1とします)
つまり
1)同様の数列があって、その数の決定番号とdとの大小比較の確率を使って、ゴマカシているのです
2)同様の数列が2つでd1,d2なら、d1<d2となる確率は1/2
3)同様の数列が100個でd1,d2・・・d100なら、d1<ma


608:x(d1,d2・・・d100)となる確率は99/100 4)同様の数列がn個でd1,d2・・・dnなら、d1<max(d1,d2・・・dn)となる確率は(n-1)/n (ここに、max(・・・)は、括弧内の最大値を表わす関数です。エクセルなどには、設定されています) で、この確率(n-1)/nとか、確率99/100とかが 「ゴマカシだ」というのが、 >>557-559のPruss氏と確率論の専門家さんの”d_Xとd_Yの可測性が保証されない”ってところです



609:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/21 07:47:51.99 6H2tIaYx.net
再度いおう
>>411より)
時枝記事の手法など
プロ数学者は、だれも相手にしない
不成立に見えて、自明に不成立だから w(^^

610:哀れな素人
19/08/21 08:06:13.58 YhhTTu/r.net
>>552
>自然数からなる有限集合は最大値を持つ。
やはりお前は完全無欠のアホだな(笑
100本の数列はどれも無限数列だぞ(笑

611:哀れな素人
19/08/21 08:10:17.36 YhhTTu/r.net
それにお前ら(サル石とスレ主)は、
やれ可測だとか非可測だとか順序だとか、
難しそうな数学用語を並べているが、
そんなものは時枝問題とは何の関係もないだろが(笑
お前らは知識を競い合っているだけの数学オタク(笑

612:哀れな素人
19/08/21 08:17:50.33 YhhTTu/r.net
時枝不成立は、次のようなことを考えてみれば分る。
s=1、3、7、8、5、6、□、2、0、4、3、3、……
この数列の7桁目から同値な数列の代表元r
を作成することはできるだろうか。
つまりたとえば
r=4、1、6、2、9、4、□、2、0、4、3、3、……
のようなrを用意することはできるだろうか。
それはできない。なぜなら□の中には
無限に多くの数を入れることができるからである。
このことは□がどの位置にあっても同じだから、
s=□、□、□、□、□、□、□、□、□、□、……
のような状態、つまりsの箱が開けられていない状態では
決して代表元rは作成できない。
ところが時枝戦略は、箱を開ける前にあらかじめ
全同値類の代表元を用意しておく、という戦略である。
しかしこれは不可能だから、時枝戦略は成立しない。

613:哀れな素人
19/08/21 08:21:36.39 YhhTTu/r.net
これまでのまとめ。
時枝戦略が成立しない理由
1 無限個の箱に実数を入れ終わること自体が不可能。
2 無限個の箱を開けて中を確認し終わること自体が不可能。
3 同値類の全パターンを用意すること自体が不可能。
4 代表元rを作成しておくこと自体が不可能。
5 100本の数列のどの列にも最大のdは存在しないから不可能。
3と4は同じ意味である。

614:哀れな素人
19/08/21 08:30:22.54 YhhTTu/r.net
>>554
おっちゃんを無視するのは可哀そうだから答えておくと
外れドアを開ける前は、三つのドアのどれか一つに
景品が入っているのだから、確率は1/3。
外れドアを開けた後は、二つのドアのどれか一つに
景品が入っているのだから確率は1/2。
単純明快(笑

615:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/21 10:28:31.46 exMypExf.net
>>572
(引用開始)
>>552
>自然数からなる有限集合は最大値を持つ。
やはりお前は完全無欠のアホだな(笑
100本の数列はどれも無限数列だぞ(笑
(引用終り)
有限 VS 無限の立場と
攻守が
逆転しているね
おれも、おサルは完全無欠のアホに同意です
笑えるわ(^^

616:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/21 10:38:32.28 exMypExf.net
>>574
(引用開始)
時枝不成立は、次のようなことを考えてみれば分る。
s=1、3、7、8、5、6、□、2、0、4、3、3、……
この数列の7桁目から同値な数列の代表元r
を作成することはできるだろうか。
つまりたとえば
r=4、1、6、2、9、4、□、2、0、4、3、3、……
のようなrを用意することはできるだろうか。
それはできない。なぜなら□の中には
無限に多くの数を入れることができるからである。
このことは□がどの位置にあっても同じ
(引用終り)
この説明は、殆ど正しい(^^
時枝記事は、ここを同値類と代表と決定番号の確率に置き換えて、確率99/100とゴマカシをする
だれが考えても
”□の箱中には無限に多くの数を入れることができる”
仮に、同値類で代表の候補を作れたとしても
無数の同値類の代表の候補から、正しい□の代表を選ぶことができる確率は0
∵ 箱の中の数は、箱を開けないと分からないのだからw(^^
おサルは、サル知恵で、”同値類と代表と決定番号の確率”が分かったつもりになっているだけ
「非可測だから、確率計算不成立」の理屈が理解できないので、そのゴマカシが理解できないアホです

617:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/21 10:45:55.28 exMypExf.net
再度いおう
>>411より)
時枝記事の手法など
プロ数学者は、だれも相手にしない
不成立に見えて、自明に不成立だから w(^^
>>377より)
i.i.d. 独立同分布
(説明)
1.箱が1個。確率変数X1
 サイコロ,コインなら、確率空間は、下記の定義の通り。
 サイコロΩ={1,2,3,4,5,6}で、1~6の数が箱に入り、各確率1/6
 コイン1枚なら、Ω={0,1}で、0か1の数が箱に入り、各確率1/2
2.箱がn個。確率変数X1,X2,・・・,Xn


618:  i.i.d. 独立同分布とすると、各箱は上記1の通り 3.箱が可算無限個。確率変数X1,X2,・・・ →X∞  i.i.d. 独立同分布とすると、各箱は上記1の通り 4.時枝は、これで尽きている。上記1~3のどの箱の確率変数も例外なし! QED(^^ https://mathtrain.jp/probspace 確率空間の定義と具体例(サイコロ,コイン) | 高校数学の美しい物語 2015/11/06 補足(>>347より) ここに書いた1~3は Alexander Pruss氏にしろ、Tony Huynh氏にしろ、Sergiu Hart氏にしろ 当然既知だよ 一方、Denisは分ってない https://mathoverflow.net/questions/151286/probabilities-in-a-riddle-involving-axiom-of-choice Probabilities in a riddle involving axiom of choice asked Dec 9 '13 at 16:16 Denis



619:132人目の素数さん
19/08/21 11:04:31.52 2uEJxB3J.net
URLリンク(m.imgur.com)

620:132人目の素数さん
19/08/21 11:05:36.73 2uEJxB3J.net
URLリンク(imgur.com)

621:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/21 11:54:35.81 exMypExf.net
>>575
> 5 100本の数列のどの列にも最大のdは存在しないから不可能。
ここも、かなり正しいです
分かりにくいと思うが
素朴に
自然数Nで、ある数aが、ある有限の定数nより小さい確率
P(a<n)=0
となることに近い
つまり、確率的に言えば、自然数N中の「ある数a」というのは「零集合」(下記ご参照)です
”a<n”の部分も、自然数N中の「零集合」です
上記では、自然数N中に元の自然数は1つずつ一様分布していると考えるのが普通です
で、時枝ではどうでしょうか?
これは、>>487に書きましたが
決定番号dをもつ代表数列の候補の数は、dが大きくなれば、指数関数的に発散します(^^
ですので、決定番号d 有限の候補の集合は、問題の数列の同値類の集合から見て、「零集合」です
なので、”決定番号d 有限の候補の集合”の議論というのは、「零集合」の内部の議論をしていることになります(^^;
(「零集合」の内部で、dに最大値があるのないのと議論する、そして確率99/100だと導くこと(それを数学の証明とすること)が、おかしいのですw(^^; )
(参考)
URLリンク(www.ne.jp)
V-3. 面積ゼロ,negligible,零集合
定義:negligible set
  [Lang, Undergraduate Analysis, pp.473-474.;杉浦『解析入門I』IV章§9 命題9.1.b(pp.262-263.)]

622:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/21 11:59:43.27 exMypExf.net
>>580-581
”ブラクラを含むWebページを開いてしまい、ブラクラが実行されてしまうことを、「ブラクラを踏む」と言う。”
URLとその説明とかあって
説明とURLとが整合していれば、「ブラクラを踏む」ことも少ないだろうね
URLだけでうかつに踏むやついるんか?(^^;
URLリンク(dic.nicovideo.jp)
ブラクラ
概要
ブラクラとはブラウザやOSの脆弱性・バグを利用して異常を発生させるスクリプト言語もしくはHTML文書を含むWebページのことである。
ブラクラを含むWebページを開いてしまい、ブラクラが実行されてしまうことを、「ブラクラを踏む」と言う。
精神的ブラクラと呼ばれる、グロテスクな画像(グロ画像)・音声・動画等で、視聴者に精神的な苦痛を与えることを指す派生語もある。

623:哀れな素人
19/08/21 13:00:55.60 YhhTTu/r.net
時枝にはたくさんの間違�


624:「があるが、以前も指摘したが、 ↓が間違いである。これについては夕方にでも書こう。 更に,何らかの事情によりdが知らされていなくても, あるD>=d についてsD+1, sD+2,sD+3,・・・ が知らされたとするならば,それだけの情報で 既に r = r(s)は取り出せ, したがってd= d(s)も決まり, 結局sd が決められることに注意しよう. いま D >= d(s^k) を仮定しよう. この仮定が正しい確率は99/100, そして仮定が正しいばあい, 上の注意によってs^k(d)が決められるのであった.



625:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/21 13:28:46.15 exMypExf.net
>>584
哀れな素人さん、どうもスレ主です。
(引用開始)
あるD>=d についてsD+1, sD+2,sD+3,・・・
が知らされたとするならば,それだけの情報で
既に r = r(s)は取り出せ, したがってd= d(s)も決まり,
結局sd が決められることに注意しよう.
(引用終り)
ここ、正しくは
”あるDがあって、それがなんであれ、sD+1, sD+2,sD+3,・・・
の箱を開ければ,それだけの情報で
既に r = r(s)は取り出せ, したがってd= d(s)も決まる
しかし、D>=dとなるのは、零集合の場合なので、確率0”
>>582ご参照)
です
ですから、(>>579より)
従来の確率論通り
コイントスなら確率1/2
サイコロなら確率1/6
によって予測する方が
よほど賢いということです

626:132人目の素数さん
19/08/21 17:19:40.35 G7FiTaif.net
おっちゃんです。
>>576
>おっちゃんを無視するのは可哀そうだから答えておくと
>>554は私ではない。お前さんからの(しかも相手を間違えて認識している)レスは不要w
>外れドアを開ける前は、三つのドアのどれか一つに
>景品が入っているのだから、確率は1/3。
これは、初期状態で、1つの向こうに景品があるドアと、、2つの向こうにヤギがいるのドアとの、合計3つのドアから、
第一段階でランダムに1つドアを選んだときに、プレーヤーが景品のドアを当てる確率である。
しかし、第二段階でモンティは残りの2つのドアから、必ず向こうにヤギがいるドアでかつランダムに選んで開けるように、
1つのドアを選ぶことになっているから、このように簡単に確率を求めることは出来ない。

627:哀れな素人
19/08/21 17:24:19.09 YhhTTu/r.net
時枝はこう考えた。
sが箱を開けずに残した最後の数列だとして、
1 sのdは一つしかない。あるいは最大のdが存在する。
2 sのdは他の99本のdの最大値Dより99/100の確率で小さい。
3 そこでsD+1、sD+2、……が分れば、sのdが分り、
4 dのときの代表元rのD番目の数が、sのD番目の数である。
しかしこれらは全部間違い(笑
1 sのdは無数にあり、最大のdなど存在しない。
2 sのdが他の99本のdの最大値Dより小さい確率は1/2。
3 sD+1、sD+2、……が分ってもsのdは分らない。
4 dのときの代表元rのD番目の数はsのD番目の数ではない。
詳しい説明は今夜にでもしよう。
今夕はここまで。

628:132人目の素数さん
19/08/21 17:29:53.19 G7FiTaif.net
第二段階から初期状態へと戻るように考える。
1):第二段階でドアを開ける前にモンティがランダムに選ぶヤギのドアが2つのとき。このときは
ランダムにヤギのドアを1つ選ぶ方法は2通りで、3つのドアから2つのドアを選ぶ方法は 3C2=3 通りだから、
第二段階でモンティがランダムに選ぶ向こうにヤギがいるドアを選んで開ける確率は 2/3。
このとき第一段階でプレーヤーが景品のドアをランダムに選んでいた方法は1通りで、
本来は第一段階から第二段階だへと進むルールだから、第一段階でプレーヤーが景品のドアをランダムに選んでいる確率は、1。
よって、第一段階でプレーヤーが景品のドアをランダムに選び、かつ第二段階でモンティがランダムにヤギのドアを選んで開ける確率は、1×2/3=2/3。
その後、第三段階でモンティがヤギのドアを見せた後に、第四段階でプレーヤーがドアを変更すると景品が当たる確率は1だから、
第四段階でプレーヤーがドアを変更して景品が当たる確率は、1×2/3×1=2/3。

629:132人目の素数さん
19/08/21 17:32:48.91 G7FiTaif.net
(>>588の続き)
2):第二段階でドアを開ける前にモンティがランダムに選ぶヤギのドアが1つのとき。このときは
ランダムにヤギのドアを1つ選ぶ方法は1通りで、3つのドアから1つのドアを選ぶ方法は 3C1=3 通りだから、
第二段階でモンティがランダムに選ぶ向こうにヤギがいるドアを選んで開ける確率は 1/3。
このとき第一段階でプレーヤーが景品のドアをランダムに選んでいた方法は 2C1=2 通りで、
本来は第一段階から第二段階だへと進むルールだから、第一段階でプレーヤーが景品のドアをランダムに選んでいる確率は、1/2。
よって、第一段階でプレーヤーが景品のドアをランダムに選び、かつ第二段階でモンティがランダムにヤギのドアを選んで開ける確率は、1/2×1/3=1/6。
その後、第三段階でモンティがヤギのドアを見せた後に、第四段階でプレーヤーがドアを変更すると景品が当たる確率は0だから、
第四段階でプレーヤーがドアを変更して景品が当たる確率は、1/2×1/3×0=0。
1)、2)から、第四段階でプレーヤーがドアを変更して景品が当たる確率は、1×2/3×1+1/2×1/3×0=2/3。
観覧者がゲームを見ているという前提があるから、プレーヤーから見た第四段階でプレーヤーがドアを変更して景品が当たる確率は、2/3。
確率 2/3 は、プレーヤーから見た第四段階でプレーヤーがドアを変更して景品が当たるか外れるか分からない確率 1/2 より大きいから、
プレーヤーにとっては、最後の第四段階でドアを変更する方が景品が当たる確率は高くなる。

630:132人目の素数さん
19/08/21 17:35:08.77 G7FiTaif.net
>>576
>>588-589はお前さんへのレス。

631:132人目の素数さん
19/08/21 17:36:32.11 G7FiTaif.net



632:それじゃ、おっちゃんもう寝る。



633:哀れな素人
19/08/21 17:37:01.40 YhhTTu/r.net
s=1、3、7、8、5、6、□、2、0、4、3、3、……
r2=4、3、7、8、5、6、□、2、0、4、3、3、……
r3=9、0、7、8、5、6、□、2、0、4、3、3、……
r4=2、4、9、8、5、6、□、2、0、4、3、3、……
r5=6、1、7、1、5、6、□、2、0、4、3、3、……
r6=8、1、0、4、2、6、□、2、0、4、3、3、……
r7=3、0、9、2、4、0、□、2、0、4、3、3、……
r8=5、9、0、9、3、1、□、2、0、4、3、3、……
他の99本の数列のdの最大値Dが7であるとして、
時枝はr8が分ればr8の7番目の数を見て、
sの7番目の数が当てられると考えたのであるが、
それが間違いであることは上の表を見れば分る。
sの7番目の箱だけ残して他の箱を全部開けても、
r8の7番目の数は□であり、依然として不明。
今夕はここまで。

634:132人目の素数さん
19/08/21 19:21:20.84 SfXTc3qP.net
>>575
>時枝戦略が成立しない理由
>1 無限個の箱に実数を入れ終わること自体が不可能。
>2 無限個の箱を開けて中を確認し終わること自体が不可能。
上記は無限公理の否定
>3 同値類の全パターンを用意すること自体が不可能。
>4 代表元rを作成しておくこと自体が不可能。
上記(特に4)は選択公理の否定
>5 100本の数列のどの列にも最大のdは存在しないから不可能。
「最大のd」の意味が不明
もし、決定番号dの範囲に上限がない、という意味なら当たり前のこと
もし、100個の自然数の集まりに最大値がないという意味なら
・・・正真正銘の馬鹿www

635:132人目の素数さん
19/08/21 19:23:08.88 SfXTc3qP.net
>>577
>おれも、おサルは完全無欠のアホに同意です
おサルってお前だろ、在阪朝鮮人w
朝鮮大にも入れん馬鹿はなにほざいてるかwww

636:132人目の素数さん
19/08/21 19:32:31.96 SfXTc3qP.net
>>582
>素朴に
>自然数Nで、ある数aが、ある有限の定数nより小さい確率
>P(a<n)=0
在阪朝鮮人は素朴に馬鹿wwwwwww
Nで各nに同じ重みをつけた測度は定義できない
したがってP(a<n)=0 はいえない
>つまり、確率的に言えば、自然数N中の「ある数a」というのは「零集合」です
在阪朝鮮人、数学を理解できず大嘘をつくwww
測度が定義できないのだから測度ゼロの集合になるわけがない
>決定番号d 有限の候補の集合は、問題の数列の同値類の集合から見て、「零集合」です
在阪朝鮮人、数学を理解できず大嘘をつくwww
決定番号dは自然数、つまり必ず有限なのだから
問題の数列の同値類の集合から見て集合全部
(決定番号dが有限でない列があると思うヤツは
 尻尾の同値関係が理解できない正真正銘の馬鹿w)
>”決定番号d 有限の候補の集合”の議論というのは、
>「零集合」の内部の議論をしていることになります
在阪朝鮮人、数学を理解できず大嘘をつくwww
決定番号dが∞の数列の集合など零集合どころか空集合なので
在阪朝鮮人の「決定番号∞なら当たらない」という主張こそ
「空集合」の内部の妄想議論wwwwwww

637:132人目の素数さん
19/08/21 19:34:43.28 SfXTc3qP.net
>>585
>D>=dとなるのは、零集合の場合なので、確率0
実際には非可測集合であって零集合ではないので、確率0とはいえない
在阪朝鮮人は馬鹿だから大ウソツキwww

638:132人目の素数さん
19/08/21 19:36:41.32 SfXTc3qP.net
>>587
素人氏は尻尾の同値関係が全然理解できてない
どんだけアタマ悪いんだ?

639:132人目の素数さん
19/08/21 19:44:03.36 SfXTc3qP.net
時枝問題における確率の前提
1)時枝の前提
100列は定数 どの列を選ぶかが確率変数
2)在阪朝鮮人wの前提
100列のうち開けた99列は定数 開けてない1列が確率変数
3)在京縄文人wの前提
100列のうち選んだ1列が定数 選ばれない99列が確率変数
2)が限りなく確率0だとして
3)は限りなく確率1である
なぜなら選んだ1列の決定番号d(固定!)に対して
他の99列の決定番号の最大値Dが、d未満である場合は
たかだか有限個だからである(裏返しw)
つまりnon-conglomerableな場合には、
前提によって確率が全然違うw
Prussが「条件付き確率にはならないよ」
というのはそういう意味
理解できない奴は馬鹿wwwwwww

640:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/21 20:19:03.35 6H2tIaYx.net
おサルさん、しっかり踊って下さい by サル回しのスレ主よりw(^^

641:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/21 20:19:40.81 6H2tIaYx.net
再度いおう
>>411より)
時枝記事の手法など
プロ数学者は、だれも相手にしない
不成立に見えて、自明に不成立だから w(^^
>>377より)
i.i.d. 独立同分布
(説明)
1.箱が1個。確率変数X1
 サイコロ,コインなら、確率空間は、下記の定義の通り。
 サイコロΩ={1,2,3,4,5,6}で、1~6の数が箱に入り、各確率1/6
 コイン1枚なら、Ω={0,1}で、0か1の数が箱に入り、各確率1/2
2.箱がn個。確率変数X1,X2,・・・,Xn
 i.i.d. 独立同分布とすると、各箱は上記1の通り
3.箱が可算無限個。確率変数X1,X2,・・・ →X∞
 i.i.d. 独立同分布とすると、各箱は上記1の通り
4.時枝は、これで尽きている。上記1~3のどの箱の確率変数も例外なし!
QED(^^
URLリンク(mathtrain.jp)
確率空間の定義と具体例(サイコロ,コイン) | 高校数学の美しい物語 2015/11/06
補足(>>347より)
ここに書いた1~3は
Alexander Pruss氏にしろ、Tony Huynh氏にしろ、Sergiu Hart氏にしろ
当然既知だよ
一方、Denisは分ってない
URLリンク(mathoverflow.net)
Probabilities in a riddle involving axiom of choice asked Dec 9 '13 at 16:16 Denis

642:132人目の素数さん
19/08/21 20:25:01.10 SfXTc3qP.net
>>599
おサルさんはあなたw
>>600
何度いってもサルの貴様の戯言は嘘であり誤りwwwwwww

643:132人目の素数さん
19/08/21 20:26:02.31 SfXTc3qP.net
在阪朝鮮人は朝鮮学校卒で朝鮮大にも入れぬ白痴のくせに
大阪大学卒とウソをつく卑怯卑劣な畜生wwwwwww

644:132人目の素数さん
19/08/21 20:27:23.68 SfXTc3qP.net
在阪朝鮮人はこれを毎日聞いて涙を流すw
URLリンク(www.youtube.com)

645:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/21 20:47:20.81 6H2tIaYx.net
メモ
旧聞ですが(^^
URLリンク(www.tokyo-np.co.jp)


646:902100049.html 富士通社長インタビュー デジタル人材に3000万円超の高額報酬制度を導入、役員上回る人も 東京新聞 2019年8月9日 朝刊 富士通の時田隆仁社長(56)=写真=は8日、本紙などのインタビューで、人工知能(AI)などの最先端のIT技術に精通した人材に高額報酬を与える新たな人事制度を2019年度中に導入する考えを明らかにした。  AIや、モノとインターネットをつなぐ「IoT」を活用したITサービスの広がりで、業種を超えたデジタル人材の獲得競争が過熱している。報酬を引き上げることで、社内の人材流出を防ぐほか、「社外からも優秀な人材が、富士通に入りやすくする」(時田氏)狙い。  報酬の年額水準について、時田氏は「専門性や市場価値に照らし、3000万~4000万円くらいにはなるのでは」と話した。同社の役員(社外取締役なども含む)の平均は約3000万円であり、採用当初からその水準を上回る人も出てくる可能性がある。  労働条件など制度の詳細は今後決める。日本では、NTTデータや東芝なども高額報酬制を導入している。  また、時田氏は19年度後半に、ITサービスのコンサルティングを手掛ける子会社を設立し、22年度までに年間3000億円規模の売上高を目指す構想も明らかにした。(岸本拓也)



647:132人目の素数さん
19/08/21 20:51:44.95 UTPT1LPN.net
>>574
数当ての作業の順番が間違っているから論点がずれている
> つまりたとえば
> r=4、1、6、2、9、4、□、2、0、4、3、3、……
> のようなrを用意することはできるだろうか。
プレーヤー2が行うことは既に用意された代表元を用いて他の数列の決定番号を用いて
「□の位置」を決めるんだよ
sを選んで数当てをする場合(>>574)の7番目の項がsとrで等しくないなら8番目以降で
数当てができればよくそれにはsとrで決まる決定番号以上の決定番号を与える数列と
代表元の組が他の列にあればよい
またこの場合(>>574)の決定番号が8であるとしてたとえば8列ある数列の
決定番号{1, 2, 3, 4, 5, 6, 7, 8}の最大であったとするとこの数列を
(ランダムに)8列の中から選ぶ確率(= 数当て失敗確率)は1/8であり
残りの決定番号が7以下の数列を選んだ場合は8番目の箱で数当てをする
ことになるから数当ては成功する
>>592
上と同じことだが
> 他の99本の数列のdの最大値Dが7であるとして
> s=1、3、7、8、5、6、□、2、0、4、3、3、……
この数列sの決定番号が8であったとする
他の99本の数列のどれかを選んだ場合は選ばなかった数列sの決定番号から最大値D=8となる
だから数当ては99本の数列では成功する
失敗するのは決定番号が8である数列sを選んで最大値D=7のときのみ

648:132人目の素数さん
19/08/21 21:44:55.28 gd17c+7u.net
>>557
>時枝の決定番号大小比較の議論(直観的な「大小比較」はダメダメ)に関係しているんだな
決定番号は自然数である
自然数は大小比較が可能である
サル畜生はバカ過ぎて話にならない

649:哀れな素人
19/08/21 22:06:22.06 YhhTTu/r.net
サル石のような完全無欠のアホはほっとくとして、
>>605も意味不明である(笑
何度でもいうが、各列の決定番号は無数にあり、
最大の決定番号などないのである(笑
また代表元の作成自体が不可能なのだ(笑
sの数列のどこかの箱を開けずに残しておかなければならないが
それを□とすると、□より前の同値類の代表元は
絶対に決定できないのである(笑
>>592を見れば分る(笑

650:哀れな素人
19/08/21 22:20:32.2


651:9 ID:YhhTTu/r.net



652:哀れな素人
19/08/21 22:25:37.70 YhhTTu/r.net
>>592の表でいえば、
r2からr7までの代表元は絶対に決定できないのである(笑
なぜなら□の中の数が不明だから(笑
r8だけは、適当にたとえば
r8=5、9、0、9、3、1、4、2、0、4、3、3、……
とすればいい(笑

653:哀れな素人
19/08/21 22:30:56.24 YhhTTu/r.net
3 同値類の全パターンを用意すること自体が不可能。
4 代表元rを用意しておくこと自体が不可能。
ID:UTPT1LPNはおそらくこのことが分っていない(笑
すべての代表元を用意することは
すべての同値類を用意することと同じであり
それはすべての実数列を用意することと同じなのである(笑
もしそんなことができるなら、
100本の数列に分けたりしなくても当てられる(笑
なぜならすべての数列が用意されているのだから(笑

654:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/21 22:34:13.13 6H2tIaYx.net
>>608
哀れな素人さん、どうも。スレ主です。
(引用開始)
s=1、3、7、8、5、6、□、2、0、4、3、3、……
このようにどこかに必ず、
当てようと思う□の箱を残しておかなければならないのである(笑
その場合、□から左の数列の代表元は絶対に決定できない(笑
なぜなら□の中に入れることのできる数は無限にあるのであって
絶対に特定することができないから(笑
(引用終り)
その考察は全く正しい
s=1、3、7、8、5、6、XD、2、0、4、3、3、……
と、□=XDと数学らしく書くと(^^
1)
左の数列1、3、7、8、5、6、と、
右の数列2、0、4、3、3、……が決まっても
XD=rDとなる確率99/100とかなるわけがない
∵ XDは全く自由に、XD以外の数列とは独立無関係に決めうるのだから
2)
さらに言えば
左の数列1、3、7、8、5、6、と、
右の数列2、0、4、3、3、……を固定しても
あるときは、XD=1
あるときは、XD=2
あるときは、XD=3
 ・
 ・
あるときは、XD=100
 ・
 ・
と可変だから
時枝先生が、「XD=rDになることが確率99/100で決まっている」と言って来ても
「時枝先生、お気は確かですか?w」でしょうね(^^;

655:哀れな素人
19/08/21 22:52:55.02 YhhTTu/r.net
>>592を訂正
s=1、3、7、8、5、6、9、2、0、4、3、3、……とする。
数当てしようと思う箱を□とする。
s=1、3、7、8、5、6、□、2、0、4、3、3、……
r2=4、3、7、8、5、6、□、2、0、4、3、3、……
r3=9、0、7、8、5、6、□、2、0、4、3、3、……
r4=2、4、9、8、5、6、□、2、0、4、3、3、……
r5=6、1、7、1、5、6、□、2、0、4、3、3、……
r6=8、1、0、4、2、6、□、2、0、4、3、3、……
r7=3、0、9、2、4、0、□、2、0、4、3、3、……
r8=5、9、0、9、3、1、4、2、0、4、3、3、……
他の99本の数列のdの最大値Dが7であるとして、
時枝はr8が分ればr8の7番目の数を見て、
sの7番目の数が当てられると考えたのであるが、
それが間違いであることは上の表を見れば分る。
sの7番目の箱だけ残して他の箱を全部開けても、
r8の7番目の数は4であり、9ではない。

656:132人目の素数さん
19/08/21 22:59:37.80 UTPT1LPN.net
>>608
>>612
> s=1、3、7、8、5、6、□、2、0、4、3、3、……
それは100列からsを選んだ場合でしょ
1/100の確率で100列からsを選んだら必ず負けるということだったら
時枝記事は正しいままですよ
この場合残りの99列の中には数当てが失敗する数列が無いことが
時枝記事の主張です
残りの99列の決定番号の最大値Dは7である
つまり残りの99列はどの数列も7番目以降は代表元と一致する
sの決定番号が8ならばs以外の残りの99列を選んだ場合の
「□の位置」は8番目になる
よって残りの99列の中には数当てが失敗する数列が無い

657:哀れな素人
19/08/21 23:08:48.13 YhhTTu/r.net
>>613
お前は全然分っていない(笑
sは箱を開けずに残しておいた最後の数列なのである(笑
残りの99本の数列は全部の箱が空けられているから、
当てられるも当てられないもない(笑

658:哀れな素人
19/08/21 23:11:36.77 YhhTTu/r.net
報ステが終わったので、今夜はここまで(笑

659:132人目の素数さん
19/08/22 00:16:07.90 G2Ej0FAV.net
>>600
おまえは「時枝解法を使わなければ当てられない」としか言ってないw
それは「時枝解法を使えば当てられる」の反論になってないw
バカ過ぎて話にならない

660:132人目の素数さん
19/08/22 00:25:34.99 G2Ej0FAV.net
>>545
>mathoverflowのRiddleのModification版(確率の計算)(=時枝記事に相当)
>に対して、
>”Denisは、安易に、Symmetryに頼りすぎで、おまえ「Symmetry成立は(非可測で)未証明」だぞ”と
>批判しているんだ(^^
おまえは
>He can choose randomly a number i between 0 and 99, and play the role of mathematician number i.
が読めんのか?
バカ丸出し

661:132人目の素数さん
19/08/22 00:43:02.20 G2Ej0FAV.net
>>558
>これが、きっと、Pruss氏が、この論文を引用した理由で
まったく的外れ

662:132人目の素数さん
19/08/22 00:59:48.53 xtJOk5yF.net
>>614
> sは箱を開けずに残しておいた最後の数列なのである
だからそれは確率1/100の話でしょ

663:132人目の素数さん
19/08/22 01:04:55.31 G2Ej0FAV.net
>>559
>P(h(Y)>h(Z))=1/2であれば嬉しい.
>hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明
時枝解法は P(h(Y)>h(Z)) なる確率について何も言っていないので、指摘は完全に的外れ。
時枝解法は
h(Y),h(Z) のいずれかをランダムに選択した方をa、他方をbとおけば、P(a>b)=1/2(a≠bとする)
と言っており、これは完全に正しい。
3年半かかってこんな簡単なことも理解できないサル畜生に数学は無理

664:132人目の素数さん
19/08/22 01:10:19.45 G2Ej0FAV.net
>>559
>hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない
>そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう
時枝解法は P(d_X≧d_Y) なる確率について何も言っていないので、指摘は完全に的外れ。
時枝解法は
d_X,d_Y のいずれかをランダムに選択した方をa、他方をbとおけば、P(a≧b)≧1/2
と言っており、これは完全に正しい。
3年半かかってこんな簡単なことも理解できないサル畜生に数学は無理

665:132人目の素数さん
19/08/22 01:12:55.95 G2Ej0FAV.net
結論
時枝解法は完全に正しい。サル畜生は完全に間違い。
3年半かかって間違いに気付けないサル畜生に数学は無理。

666:132人目の素数さん
19/08/22 01:25:47.04 G2Ej0FAV.net
>>565
>ここらを批判しているのが、>>557-559のPruss氏と確率論の専門家さんの”d_Xとd_Yの可測性が保証されない”ってところです
サル畜生は自分で理解しようとはせず他人の尻馬に乗っかってばかりいる
だから間違いを指摘されても理解できない
実際、”d_Xとd_Yの可測性が保証されない” なる指摘が如何に的外れか解説してやっても、まるで理解できない
サル畜生がやってることは数学ではない 数学板から出て行け

667:132人目の素数さん
19/08/22 01:29:03.94 G2Ej0FAV.net
サル畜生は他人の尻馬に乗っかってばかりで自分では理解しようとしないから
まったく議論についていけない
だから数学を議論する場にサル畜生は来るべきでない
サル畜生は数学板から出て行け

668:132人目の素数さん
19/08/22 01:41:21.08 G2Ej0FAV.net
>>570
>2)同様の数列が2つでd1,d2なら、d1<d2となる確率は1/2
時枝解法はそんなこと言ってない。
時枝解法は
 d1,d2 のいずれかをランダムに選択した方をa、他方をbとおけば、P(a≧b)≧1/2
と言っている。これは完全に正しい。
こんな簡単なことが3年半かかって理解できないスレ主は数学板に来るべきレベルじゃない。出て行け。

669:132人目の素数さん
19/08/22 01:43:24.14 G2Ej0FAV.net
バカ主はバカ過ぎるので数学は無理 数学板から出て行け

670:132人目の素数さん
19/08/22 01:47:06.98 G2Ej0FAV.net
>>570
>で、この確率(n-1)/nとか、確率99/100とかが
>「ゴマカシだ」というのが、
>>>557-559のPruss氏と確率論の専門家さんの”d_Xとd_Yの可測性が保証されない”ってところです
スレ主は平気で嘘を吐くサイコパス
Prussは確率(n-1)/nを認めている
Pruss「we win with probability at least (n-1)/n. That's right.」

671:132人目の素数さん
19/08/22 01:48:30.26 G2Ej0FAV.net
>>571
スレ主は平気で嘘を吐くサイコパス

672:132人目の素数さん
19/08/22 01:52:56.75 G2Ej0FAV.net
>>577
>100本の数列はどれも無限数列だぞ(笑
が完全に的外れであることも分からずに他人の尻馬に乗っかるバカに数学板に来る資格無し 出て行け

673:132人目の素数さん
19/08/22 02:05:07.55 G2Ej0FAV.net
>>578
>「非可測だから、確率計算不成立」の理屈が理解できないので、そのゴマカシが理解できないアホです
成立派は「「非可測だから、確率計算不成立」の理屈」など百も承知、その上で時枝解法の成立を理解している。
バカザルには理解できないだけの話。
実際、おまえ>>621を理解できないじゃん

674:132人目の素数さん
19/08/22 02:10:30.79 G2Ej0FAV.net
>>579
>時枝記事の手法など
>プロ数学者は、だれも相手にしない
嘘吐きサイコパス
>不成立に見えて、自明に不成立だから w(^^
おまえが理解できないだけ
>4.時枝は、これで尽きている。上記1~3のどの箱の確率変数も例外なし!
おまえは「時枝解法を使わなければ当てられない」としか言ってない
それは「時枝解法を使えば当てられる」の反論になってない
>一方、Denisは分ってない
おまえの妄想に過ぎない
嘘、妄想を平然と口にするサイコパスに数学板に来る資格無し 出て行け

675:132人目の素数さん
19/08/22 02:18:16.92 G2Ej0FAV.net
>>582
バカ丸出し
選択公理を仮定すればR^N/~の代表系の存在が保証される
R^N/~の代表系が存在するなら、∀s∈R^Nの決定番号は自然数であることが保証される
「Nの有限部分集合には最大元が存在する」という定理から、100個の決定番号には最大値が存在する
こんな簡単なことも分からないバカザルに数学は無理なので数学板から出て行け

676:132人目の素数さん
19/08/22 02:26:24.70 G2Ej0FAV.net
>>585
こらこら、相手が素人だと思って嘘教えるんじゃないw
>しかし、D>=dとなるのは、零集合の場合なので、確率0”
>(>>582ご参照)
>です
バカ過ぎて話にならない
>>632の通り任意の決定番号はある自然数である。
ある自然数より大きな自然数は無限に存在する。
よって
>D>=dとなるのは、零集合の場合なので、確率0”
は大嘘
嘘デタラメを平気で垂れ流すサイコパスには害悪しかない 数学板から出て行け

677:132人目の素数さん
19/08/22 03:09:56.98 G2Ej0FAV.net
>>611
おまえは「1列では当てられない」としか言ってない
それ、時枝解法ではないのでまったく的外れ
バカ丸出し

678:132人目の素数さん
19/08/22 03:10:24.07 G2Ej0FAV.net
モンティホール問題
回答者がドアを変更した場合、最初に当たりドアを選んでいた場合(確率は1/3)必ず外れ、最初にハズレドアを選んでいた場合(確率は2/3)必ず当たることになる。
つまり当たる確率は、ドアを変更しない場合1/3のままであるのに対し、ドアを変更する場合2/3に変化する。
よってドアを変更すべきである。
尚、「モンティがハズレドアを見せた後、ドアを変更しなくても確率は1/3から1/2に変化する」は間違い。
なぜならモンティの開けるドアの選択には偏りがあり、残った2つのドアの当たり確率が均等ではないから。
(「2つに一つだから確率1/2」が成立するには同様の確からしさという前提条件が必要。)

679:132人目の素数さん
19/08/22 03:26:55.64 G2Ej0FAV.net
>なぜならモンティの開けるドアの選択には偏りがあり、残った2つのドアの当たり確率が均等ではないから。
回答者が最初に当たりドアを選んでいた場合、モンティの開けるドアの選択肢は2つあり、そのうちの一つを開ける
回答者が最初にハズレドアを選んでいた場合、モンティの開けるドアの選択肢は1つあり、それを開ける

680:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/22 06:22:29.31 W0hCtIJC.net
面白いので貼る(^^
URLリンク(news.biglobe.ne.jp)
富士通などのSIerの惨状を見ていると、太平洋戦争で負けた大日本帝国を思い出す??2019上半期BEST5 8月21日(水)11時0分 文春オンライン
(抜粋)
2019年上半期(1月?6月)、文春オンラインで反響の大きかった記事ベスト5を発表します。いいね!部門の第3位は、こちら!(初公開日 2019年4月11日)。
日本人が経営の組織はだいたい同じ問題を抱えている
 で、先日、日本の大手SIerであり、官公庁から大手企業、地方の中小企業にいたるまで多くの組織の情報化を支えてきた富士通グループというステキ法人について、5年勤めたとされる人物が増田(はてなアノニマスダイアリー)で実情記事を書いていて話題となりました。
5年いた富士通を退職した理由
URLリンク(anond.hatelabo.jp)
 あまりにも感動的でストレートな内容だったため、この界隈だけでなく私の生息する社会調査やサイバーセキュリティ関連の皆さんのハートを直撃しました。もうね、キュンキュンしますよ。開発系の人たちの集まるコミュニティでは大盛り上がりでした。さすがに富士通で働いている人からは「そこまで酷い環境じゃないよ」という反論もいくつか出ていまして、細かい点では事実と異なるのかもしれません。
 しかし、この記事は富士通という組織についてですが、NEC(日本電気)や沖電気、日立製作所、NTTデータといった純正ジャパニーズ企業だけでなく、IBMや日本ユニシス、オラクルなどでも似たような状況があるようで、つまるところ「日本人が経営幹部の組織はだいたい同じ問題を抱えるのだ」という結論にいたり、無事閉会しました。
そして本件記事をみなで内容吟味の末、何となくみんなで「これって太平洋戦争末期の日本軍みたいな状況なんだろうね」ということで一致したわけであります。
つづく

681:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/22 06:23:14.71 W0hCtIJC.net
>>637
つづき
日本企業のテーマは「人材流出」
 何が起きているのかと言うと、先日特徴的な記事が出て少し炎上状態に


682:なりました。 GAFAに人材流出防げ NTTコムの新キャリアパス : NIKKEI STYLE https://style.nikkei.com/article/DGXMZO42715110Q9A320C1000000/  このインタビューに出ているNTTコミュニケーションズの山本恭子さん、名誉のために書くと界隈では悪く言う人の少ないまともな人物で、ややもすると旧弊的な組織をどうにか風通し良くしようと奮闘しているなかでの話だそうです。炎上させるやつって最低ですよね。  逆に、組織にしがみついても今回のように45歳で見切りをつけられる可能性のある富士通にいて展望が拓けるのか? 未来があるのか? と言われれば、組織的にはいくら後から「戦死」と揶揄されようとも他の道を探しておかしくない状況になり得ます。 例えば30歳で結婚して、32歳で子どもができて、45歳と言ったら中学生になるタイミングで会社から放り出されるかもしれないという危機感をもっていかなければいけないわけですよ。それなら、富士通ほど安定していないかもしれないけど、デスマーチのない給料の良いところで干されないだけの技術力を磨こう、と考える若者が出てもおかしくありません。 「大手企業に勤めている会社員」という先のない肩書よりも、どこにでも通用する技術を持ち、いろんなところからお声がかかるフリーランスの技術者であるほうが、収入面でも環境面でも有利になってしまう時代が到来しているとも言えます。もちろん、いま景気が良いから大企業よりもベンチャーや外資系のほうが働きやすいというのはあるかもしれません。 (著者謝辞:この記事の執筆にあたっては、富士通グループ、NEC、NTTグループほか、多くの技術者の方のご意見を頂戴し、参考にして執筆をしました。すべての文責は山本一郎にあります。お考えを寄せていただいた皆様には、深く感謝を申し上げます) (山本 一郎)



683:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/22 07:09:55.29 W0hCtIJC.net
>>595
>Nで各nに同じ重みをつけた測度は定義できない
>したがってP(a<n)=0 はいえない
遠隔すまん
おサルも多少測度が分ってきたのかな?w(^^
過去、確率論の専門家さん(>>559)や、数学DR Pruss氏(>>510)の
「時枝の決定番号大小比較の議論は、直観的な「大小比較」で、確率論としての可測性がないので、ダメ」ってことで
それ、”諸刃の剣”ですけど
(参考)
URLリンク(kotobank.jp)
諸刃の剣(読み)モロハノツルギ
(抜粋)
デジタル大辞泉の解説 出典 小学館
《両辺に刃のついた剣は、相手を切ろうとして振り上げると、自分をも傷つける恐れのあることから》
一方では非常に役に立つが、他方では大きな害を与える危険もあるもののたとえ。両刃の剣。
(引用終り)

1)”Nで各nに同じ重みをつけた測度は定義できる”!!(下記な)(^^
2)但し、全事象Ωに対して、P(Ω)=1に出来るかどうかが問題です
1)については、自然数NをR中に埋め込んで、Rのルベーグ測度という視点からは
 「可算集合のルベーグ測度は必ず 0」(下記)から、自然数N及び1点nの測度は0
 (注:この場合、自然数N及び1点nは、零集合です(^^; )
2)「P(Ω)=1に出来るかどうか」は、”ディラック測度”(下記)を使うと可能な場合もありうるが
 (自然数N 程度なら、”ディラック測度”で可能かもw)
 時枝の決定番号の集合では、(1つの同値類の集合の濃度は非可算なので)無理っぽい
 (確率論の専門家さん(>>559)"d_Xとd_Yがそもそも分布を持たない可能性すらある"という指摘がこれだろうと思う(^^; )
つづく

684:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/22 07:10:18.90 W0hCtIJC.net
>>639
つづき
(参考)
URLリンク(ja.wikipedia.org)
ルベーグ測度
(抜粋)
体積には「互いに素な集合の体積は元の体積の和に等しい」という性質(加法性)がある。この性質を保ちながらより複雑な集合に対しても「体積」を定めることができるよう体積の概念を拡張できる。このような拡張は一意である。
実解析、特にルベーグ積分で用いられる。
体積と同様ルベーグ測度は値として ∞ をとりうる。

・二次元の集合 A が、一次元区間 [a, b] と [c, d] の 直積集合(つまり辺が軸に平行な長方形)であれば、A の二次元ルベーグ測度は、一次元ルベーグ測度の積 (b - a)(d - c) に等しい。
・可算集合のルベーグ測度は必ず 0 である。カントール集合は、測度 0 の非可算集合の例である。
URLリンク(ja.wikipedia.org)
数え上げ測度
(抜粋)
集合の元の個数を数えるという方法でその "大きさ"(あるいは "容積")を測る、ルベーグ積分における測度の一種である。
(2. は一つでも有限でないものがあれば両辺が ∞ として一致するという意味で成り立つから、全て有限のときを確かめればよいがこちらも明らかであろう)。
特に、任意の集合 A に対して μ(A) が定義できるので、可測集合族 M としては 2^S 全体をとることができて、(S, 2^S, μ) は測度空間になる。
数え上げ測度が σ-有限であることと集合 S が可算であることは同値になる。
総和は積分である
他の測度との関係
数え上げ測度はすべての点に関するディラック測度の和として表すことができる。反対に、可算集合上の任意の測度の、数え上げ測度に対するラドン・ニコディム微分はその測度のディラック測度の重み付き和としての表示を与えている。

685:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/22 07:31:42.17 W0hCtIJC.net
>>639 補足
> 時枝の決定番号の集合では、(1つの同値類の集合の濃度は非可算なので)無理っぽい
ここね、時枝では、可算無限長数列R^N つまり 無限次元ベクトル空間を扱っていて、
分り易い記号で書けば R^∞の空間ってことね
それで、R^∞の空間なんて、そのままでは計量が入らない(細かく説明しないので、自分で調べてくれ)
なので、ヒルベルト空間みたく
(下記例の ”複素数を項とする無限数列 z = (z1, z2, …) で級数  Σn=1~∞ |zn|^2 が収束するようなもの(自乗総和可能な無限複素数列)”)
に制限を入れて扱うのが普通
無制限のR^∞の空間に、どうやって計量を入れて、「P(Ω)=1に出来るか」ってことで、無理かもってことな(^^;
(参考)
URLリンク(ja.wikipedia.org)
ヒルベルト空間
(抜粋)
ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である
ヒルベルト空間は、さらに完備距離空間の構造を備えている(極限が十分に存在することが保証されている)ので、その中で微分積分学がきちんと展開できる
ヒルベルト空間は、典型的には無限次元の関数空間として、数学、物理学、工学などの各所に自然に現れる
これら種々の応用の多くの根底にある


686:抽象概念を「ヒルベルト空間」と名付けたのは、フォン・ノイマンである 古典的なユークリッド空間はさておき、ヒルベルト空間の例としては、自乗可積分関数の空間 L^2、自乗総和可能数列の空間 l^2、超関数からなるソボレフ空間 H^s、正則関数の成すハーディ空間 H^2 などが挙げられる 定義と導入 動機付けとなる例 最もよく知られたヒルベルト空間の例の一つは、三次元の空間ベクトル全体の成すユークリッド空間 R^3 にドット積を考えたものであろう 定義 H がヒルベルト空間であるとは、H は実または複素内積空間であって、さらに内積によって誘導される距離関数に関して完備距離空間をなすことを言う もう少し自明でない例 複素数を項とする無限数列 z = (z1, z2, …) で級数  Σn=1~∞ |zn|^2 が収束するようなもの(自乗総和可能な無限複素数列)全体の成す数列空間を l^2 で表す



687:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/22 07:48:55.96 W0hCtIJC.net
>>639 補足
> 1)については、自然数NをR中に埋め込んで、Rのルベーグ測度という視点からは
> 「可算集合のルベーグ測度は必ず 0」(下記)から、自然数N及び1点nの測度は0
> (注:この場合、自然数N及び1点nは、零集合です(^^; )
数え上げ測度(>>640)でも可能だな
”2. は一つでも有限でないものがあれば両辺が ∞ として一致するという意味で成り立つ”
とあるように
自然数N全体を ∞ 、各1点のnに1を与えれば
”Nで各nに同じ重みをつけた測度は定義できる”!!
まあ、おサルには難しいだろうねw(^^

688:哀れな素人
19/08/22 07:50:30.27 4yMeRkjx.net
>>619
イミフなアホレス乙(笑
ID:G2Ej0FAV
これはアホのサル石(笑
真夜中に一人で発狂(笑
時枝は一流数学者だから、時枝は正しい、
wikipediaが肯定しているから、
モンティ・ホール問題はマリリンが正しい、
と信じ続ける池沼(笑
権威だけが頼りのクルクルパー(笑

689:132人目の素数さん
19/08/22 07:54:14.96 4yMeRkjx.net
>>629
>100本の数列はどれも無限数列だぞ(笑
>が完全に的外れであることも分からずに
的外れだと思っている馬鹿(笑
無限数列と同値な数列は無限にあるという、
この単純なことさえ分らない馬鹿(笑
とにかくこういう馬鹿がいるから
このスレで時枝論争が延々と続く(笑

690:哀れな素人
19/08/22 08:04:51.62 4yMeRkjx.net
s=1、3、7、8、5、6、9、2、0、4、3、3、……とする。
数当てしようと思う箱を□とする。
s=1、3、7、8、5、6、□、2、0、4、3、3、……
r2=4、3、7、8、5、6、□、2、0、4、3、3、……
r3=9、0、7、8、5、6、□、2、0、4、3、3、……
r4=2、4、9、8、5、6、□、2、0、4、3、3、……
r5=6、1、7、1、5、6、□、2、0、4、3、3、……
r6=8、1、0、4、2、6、□、2、0、4、3、3、……
r7=3、0、9、2、4、0、□、2、0、4、3、3、……
r8=5、9、0、9、3、1、4、2、0、4、3、3、……
r9=7、4、1、0、8、2、3、9、0、4、3、3、……
……………………
r8以降の代表元は作成できるのである。
たとえば上の表のr9のように。
しかしr2~r7の代表元は作成できない。
なぜなら□の中に入れることができる数は
無限にあるからである。
だからr2~r7の代表元を
あらかじめ用意しておくことはできない。
だから数当てはできない。
これは□の位置がどこであろうと同じである。

691:哀れな素人
19/08/22 08:11:24.49 4yMeRkjx.net
そして、いうまでもないが、
r9、r10、r11、…………、rn、rn+1、……
と、いくらでも、無限に、rを作ることができる。
そしてr9、r10、r11、…………、rn、rn+1、……の
9、10、11、…………、n、n+1、……が決定番号だから、
決定番号dは、いくらでも、無限に、作ることができるのである。
ところがサル石というアホの中のアホは、
決定番号dには最大のものが存在する、という(笑
では、これが最大の決定番号dだという、
そのdを示してくれ(笑
示すことができたら一億円やろう(笑

692:哀れな素人
19/08/22 08:22:35.77 4yMeRkjx.net
要するに数当てができるためには、
あらかじめ実数列の全パターンを
用意しておかなければいけないが、
それは不可能だから、時枝戦略は成立しない(笑
まとめると、
○時枝戦略が成立しない理由
1 無限にある箱の中に実数を入れ終わること自体が不可能。
2 無限にある箱を開けて中の実数を確認し終わること自体が不可能。
3 無限にある実数列の全パターンを用意すること自体が不可能。
4 100本の数列のどの列にも最大のdは存在しないから不可能。

693:132人目の素数さん
19/08/22 09:50:21.67 G2Ej0FAV.net
>>639
いまだに Ω={1,2,...,100}、P(i)=1/100、P(Ω)=1 が理解できないバカ
「さて, 1~100 のいずれかをランダムに選ぶ. 例えばkが選ばれたとせよ. s^kの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない. 」
という日本語が理解できないサル畜生

694:132人目の素数さん
19/08/22 09:58:51.79 G2Ej0FAV.net
>>647
おまえは
0 無限個の箱を用意し終わること自体が不可能。
とだけ言って数学板を去るべきなのである。
それが現代数学を否定する者のとるべき態度。
ところがおまえは現代数学を否定しておきながら女々しく未練を残し続けている。
その一方で現代数学を勉強しようともし�


695:ネい甘ったれ。 根性が腐っている。



696:132人目の素数さん
19/08/22 10:02:09.03 G2Ej0FAV.net
>>643
朝っぱらから妄想全開乙
>>644
>100本の数列はどれも無限数列だぞ(笑
は的外れ

697:哀れな素人
19/08/22 11:14:09.84 4yMeRkjx.net
>>649
無限個の箱を用意し終わること自体が不可能だろが(笑
用意できると考えるようなアホはお前しかいない(笑
>>650
毎日妄想全開乙(笑
>100本の数列はどれも無限数列だぞ(笑
>は的外れ
的外れと考えるような馬鹿はお前しかいない(笑
要するにお前は度外れの馬鹿(笑
フツーの人が理解できることがお前には理解できない(笑

698:哀れな素人
19/08/22 11:23:53.69 4yMeRkjx.net
サル石という日大卒の度外れの馬鹿、
s=1、3、7、8、5、6、9、2、0、4、3、3、……
この数列に最大の決定番号dが存在するというなら
それを示してくれ(笑
そんなものが存在すると思うような馬鹿はお前しかいない(笑
ケーキを食べ尽くすことはできない、
ということすら理解できない馬鹿(笑

699:哀れな素人
19/08/22 11:28:35.53 4yMeRkjx.net
要するにこのスレには僕とスレ主しかいないから
お前は自分のアホさに気付かない(笑
あるいはおっちゃんとかΩ星人しかいないから気付かない(笑
あるいはお前と同レベルの、
時枝成立と考える馬鹿しかいないから気付かない(笑
世間知らずの阿呆(笑

700:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/22 14:47:44.74 3FLoBd1W.net
<おサルの主張>
>>595
>Nで各nに同じ重みをつけた測度は定義できない
<おれ(ヒト)の主張>
>>639より)
1)については、自然数NをR中に埋め込んで、Rのルベーグ測度という視点からは
 「可算集合のルベーグ測度は必ず 0」(下記)から、自然数N及び1点nの測度は0
 (注:この場合、自然数N及び1点nは、零集合です(^^; )
URLリンク(ja.wikipedia.org)
ルベーグ測度
(抜粋)
・可算集合のルベーグ測度は必ず 0 である。カントール集合は、測度 0 の非可算集合の例である。
>>642より)
数え上げ測度(>>640)でも可能だな
”2. は一つでも有限でないものがあれば両辺が ∞ として一致するという意味で成り立つ”
とあるように
自然数N全体を ∞ 、各1点のnに1を与えれば
”Nで各nに同じ重みをつけた測度は定義できる”!!
(引用終り)
おサルは、バカだね
測度がぜんぜん分かってないな、アホだな、こいつw

701:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/22 15:19:46.54 3FLoBd1W.net
>>654 補足
>>640 数え上げ測度(ディラック測度)補足)
1.数年前、時枝の議論の初期に(このとき「おサル」は居なかったので知らんのだろうがww(^^ )、
 宝くじで、1等1枚、総発行枚数n枚として、当選確率1/nだが
 n→∞ でどうなるという議論があった
2.数え上げ測度の1/nの一様分布だと、
 n→∞ で1/n→0になって、非正則分布になるんだけどね
3.ディラック測度を使うと
 1等1枚の当選番号をa(=”あ”(当り))として、a以外は全部外れとして
 aのみ測度1、a以外は測度0と考えることができる
4.上記は、すでに当選番号 aが決まっている場合で、市場の抽選でガラガラと回して、ポンと玉が出て、「当り」「外れ」という場合
5.では、宝くじのように、事後に当選番号を決める場合はどうか?
 ・事前には、当選番号が存在しないから、P(Ω)=0
 ・事後で、当選番号決定後、P(Ω)=1(ディラック測度で、aのみ測度1)
  と考えることができる
6.もう一つの考えでは、
 ・有限nの極限で、n→∞ 1/n→0 P(Ω)=1のまま
 ・事後で、当選番号決定後、ディラック測度でaのみ測度1、他は全て0で、P(Ω)=1
  と考えることもできる
  これは、シュレーディンガーの猫の話に似ているんだ(^^;
7.ここ、5の立場をとるか、6の立場を取るのか?
  すでに、数学の世界を離れて、現実の世界と数学的確率の世界とをどう対応させるか?
  これは、すでに哲学の世界の話かも知れないw(^^;
(参考)
URLリンク(ja.wikipedia.org)
シュレーディンガーの猫
(抜粋)
確率解釈が正しいとすれば、観測者が箱を開けるまで、猫の生死は決定していないのである。

702:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/22 15:24:19.39 3FLoBd1W.net
>>655 訂正
2.数え上げ測度の1/nの一様分布だと、
 n→∞ で1/n→0になって、非正則分布になるんだけどね
 ↓
2.数え上げ測度の各nで1の一様分布だと、
 n→∞ でΣn→∞になって、非正則分布になるんだけどね
 (当りかどうか不明の)ある番号b1枚の的中確率1/n→0
補足
非正則分布というキーワードで説明するなら
Σn→∞にしないとね(^^;
おサルのバカがうつったかな(^^;

703:132人目の素数さん
19/08/22 15:40:42.42 yRxBJjTSH
番組の途中ですが...失礼します...

ガロアさんの最後って、あの「青葉の笛」という歌に重なるものが
ありますね。

もう時間が無いと、わずかな書き付けのようなメモを託し
若い命を散らして逝った。 悲しくも美しく燃え..とも云える最後。

まさしく「討たれし平氏の公達哀れ...♪」に重なります。

超難解で超高度な数学理論を理解し、日々研鑽に明け暮れる
数学オタにみなさん、くれぐれもイカロスのように舞い上がり
過ぎて、自爆しないように気を付けて下さいね。

704:132人目の素数さん
19/08/22 20:09:58.04 58M6Dn11.net
>>647
>4 100本の数列のどの列にも最大のdは存在しないから不可能。
しつこく書いてるが、これだけが全然無意味
数列が決まった時点でdの値が決まる
100個の決定番号(自然数)d1~d100があれば
その中に必ず最大値がある。
最大値をとる列が1列であればそれ以外の列は当たる
最大値をとる列が2列以上あれば全部当たる
私が素人氏なら成立しない理由はこう書く
α そもそも無限列が存在しない(無限公理の否定)
β 仮に無限列の存在を認めたとしても
  同値類に対して代表元を選ぶことができず
  したがって決定番号も定まらない(選択公理の否定)
逆に無限公理も選択公理も認めるのであれば
素人氏はもはや反駁の根拠を持たない

705:132人目の素数さん
19/08/22 20:10:29.33 58M6Dn11.net
>>639
>1)”Nで各nに同じ重みをつけた測度は定義できる”!!
> 自然数NをR中に埋め込んで、Rのルベーグ測度という視点からは
>「可算集合のルベーグ測度は必ず 0」から、自然数N及び1点nの測度は0
馬鹿丸出し(ワンアウト!)
P(N)=1が絶対条件だから、P(N)=0の時点で無意味
>>642
>自然数N全体を ∞ 、各1点のnに1を与えれば
>”Nで各nに同じ重みをつけた測度は定義できる”!!
馬鹿丸出し(ツーアウト!!)
P(N)=1が絶対条件だから、P(N)=∞の時点で無意味
>>639
>2)「P(Ω)=1に出来るかどうか」は、
>   自然数N 程度なら、”ディラック測度”で可能かも
馬鹿丸出し(スリーアウト!!!)
1.P(N)=1
2.どの1点の測度も同じ
この2条件を満たす測度は存在しない
注)2.の条件を無くせば、実現はできる
例えば0<q<1として
P(1)=(1-q)
P(2)=q(1-q)
P(3)=q^2(1-q)

とすればいい
qが1に近づくにつれて点の測度は均一化されるが
q=1の場合には総和が1にならないのでNG


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch