現代数学の系譜 工学物理雑談 古典ガロア理論も読む75at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 - 暇つぶし2ch551:階述語論理で無限公理なしでも、”無限のモデル”は可能だが、表現できないあるいは識別できない? 二階述語論理で、しっかり無限集合を証明するためには、無限公理がいるってことかいな? (^^; (参考) https://ja.wikipedia.org/wiki/%E3%83%AC%E3%83%BC%E3%83%B4%E3%82%A7%E3%83%B3%E3%83%8F%E3%82%A4%E3%83%A0%E2%80%93%E3%82%B9%E3%82%B3%E3%83%BC%E3%83%AC%E3%83%A0%E3%81%AE%E5%AE%9A%E7%90%86 レーヴェンハイム?スコーレムの定理 (抜粋) 理論の無限のモデルとは、ここでいう M である。定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。 https://ja.wikipedia.org/wiki/%E4%BA%8C%E9%9A%8E%E8%BF%B0%E8%AA%9E%E8%AB%96%E7%90%86 二階述語論理 (抜粋) 二階述語論理では、「ドメインは有限である」とか「ドメインは可算無限集合の濃度である」といった文も形式的に表現可能である ドメインが有限であるというには、そのドメインから同じドメインへの全ての単射関数が全射であることを論理式で表せばよい ドメインが可算無限集合の濃度であることをいうには、そのドメインの任意のふたつの無限部分集合間に全単射があることを論理式で表せばよい 一階述語論理ではこれら(「有限集合であること」や、「可算集合であること」)を表現できないことが、レーヴェンハイム-スコーレムの定理から導かれる




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch