19/08/19 21:32:43.97 mR92r4MZ.net
>>462
哀れな素人さん、どうも。スレ主です。
(引用開始)
いや、スレ主よ、僕がいっているのはそういうことではなくて、
sの同値類(の代表元)には、
決定番号が2の同値類もあれば、決定番号が3の同値類もあれば、
決定番号が4の同値類もあれば、決定番号が5の同値類もあれば、
要するに決定番号がnの同値類が無限にあるはずなのに、
時枝があたかもsの同値類(の代表元)は一つしかない
かのように書いていることである。
(引用終り)
1.えーと、「sの同値類(の代表元)には」 のところ、「同値類」と「代表元」を区別しましょう
で、ある数列sに対して、「同値類」はただ1つです
一方、「代表元」は、時枝では「同値類」中のどの元でも可で、「代表元」として可能な元は、基本無数にあります
∵(>>458より) ”1つの同値類は、それに含まれている元のうちどれをとっても、それを代表元とする同値類はもとと同じ集合になる(代表元の取替えによって不変である)”
2.「時枝があたかもsの同値類(の代表元)は一つしかないかのように書いている」のは、無数にある代表の候補から、「1つ選んで決める」ということですね
3.”決定番号が2の同値類もあれば、決定番号が3の同値類もあれば・・・”は、正しくは、”決定番号が2の代表の候補もあれば、決定番号が3の代表の候補もあれば・・・”
ですよね(^^
4.さらに言えば、例えば、決定番号が3の代表の候補がいくつあるのかが、確率を考えるためには、問題になります
これは、箱に数を入れる方法で変わります
まず、決定番号が1の代表の候補は、ただ1つ。∵問題の数列sと完全一致にする数列のみ
5.決定番号が3の代表の候補は、問題の数列をs=(s1,s2,s3,・・・)として
決定番号が3の代表の候補 s=(s'1,s'2,s3,・・・) | s1≠s'1 & s2≠s'2とします
(以下、”決定番号が3の代表の候補”などを、候補を略して、”決定番号が3の代表”と記します)
もし、コイントス{0,1}なら、s'1,s'2の組合せは4通りで、決定番号が1が1通り、決定番号が2が1通り、を除いて、2通りです
もし、サイコロ{1,2,3,4,5,6}なら、s'1,s'2の組合せは36通りで、決定番号が1が1通り、決定番号が2が5通り、を除いて、30通りです
つづく