現代数学の系譜 工学物理雑談 古典ガロア理論も読む74at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む74
- 暇つぶし2ch569:であることは同値である。そうでない場合には(奇異なことに)無限かつデデキント有限な集合が存在しうる。 (無限公理によって存在が保証されるところの)自然数全体の成す集合というのは有限集合ではない 基礎付け問題 ゲオルク・カントールは、無限集合を数学的に扱える集合論を構築しようとした。従って、有限集合と無限集合の区別が理論の中核に存在することとなった。基礎付け主義者(foundationalist)の中でも特に有限主義者は無限集合の存在を認めず、有限集合にのみ基づいた数学を提唱した。 無限集合を擁護する数学者にとっても、ある重要な文脈では、有限集合と無限集合の形式的区別は微妙な問題として残った。 どちらの理論にもいわゆる非標準モデルの過剰が存在する。 より一般化すると、集合や有限集合といった非形式的観念は、様々な形式体系の公理的機構と論理的機構によって解釈される。 よく知られた公理的集合論としてツェルメロ=フレンケルの公理的集合論 (ZF) 、ZF に選択公理を加えたもの (ZFC)、NBG集合論(ノイマン=ベルナイス=ゲーデル)、非有基的集合論、バートランド・ラッセルの型理論、および各種モデルの理論がある。場合によっては、古典的な一階述語論理、各種高階論理、直観論理などを選択する場合もある。 自然数の概念が論理的に集合の前に前提としてある場合、集合 S が有限であることを {x | x < n} となる自然数の集まりとの全単射として定義できる。数の概念を集合論に基づいて定義するため、例えば有限の整列集合の順序型によって自然数をモデル化する。その場合、有限性について自然数に基づかない構造的定義が必要となる。 よく知られている有限性の定義として、リヒャルト・デーデキントの定義とカジミェシュ・クラトフスキの定義がある。
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch