19/08/02 13:29:51.46 ZHN8Qh/w.net
>>37
>まあ、無限大を考えることで、偏微分方程式の解が解析的に簡単に求まることは良く知られている
基本解を考えることに似ているかも(^^
まず、簡単な場合を考えて、あとは、それからの補正だと(^^;
URLリンク(ja.wikipedia.org)
基本解
(抜粋)
数学の分野において、線型偏微分作用素に対する基本解(きほんかい、英: fundamental solution)とは、旧来よりグリーン関数と呼ばれている概念の、シュワルツ超函数論を用いた定式化である。ディラックのデルタ関数 δ(x) を用いて、作用素 L に対する基本解 F は非斉次方程式
LF = δ(x)
の解と定められる。ここで F は、特に理由が無ければシュワルツ超函数(弱い意味での解)として存在すればよい(真の解であることまでは要求されない)。
この概念は、二次元および三次元のラプラシアンに対して長く知られたものであった。任意の次元のラプラシアンに対しては、リース・マルツェルによって調べられた。
定数係数の任意の作用素に対する基本解の存在は、バーナード・マルグランジュ(英語版)とレオン・エーレンプライス(英語版)によって示された。
これは右辺を任意にとった方程式を解くうえで、畳み込みを用いる方法が直接的に結び付く、最も重要なケースであった。
動機付け
基本解が得られれば、元の方程式の求める解を見つけることは簡単である。実際、その方法は畳み込みを用いることで達成される。
基本解はまた、境界要素法による偏微分方程式の数値解においても重要な役割を担う。
(引用終り)