19/07/31 09:59:42.54 /g9to0os.net
>>860
問答無用!w(^^;
(>>851より)
下記の通り「時枝の手法では、あるD∈Nがあって、XDは確率1-ε(例えば99/100など)で、実数値rDを取るという」だから
「Dが一定」である必要なし!
(>>829より)
1)独立同分布(IID)を仮定しよう。具体的に、コイントスで、{0,1}を入れた(>>812)
可算無限個の確率変数の族X1,X2,・・・(時枝記事後半にある通り)
で任意のi∈Nで、Xiは確率1/2で、0か1かの値を取る
2)ところが、時枝の手法では、あるD∈Nがあって、XDは確率1-ε(例えば99/100など)で、実数値rDを取るという
これは矛盾である(>>812)
3)独立同分布(IID)を仮定した瞬間、これで終りでしょw(^^
これには、全部裏付けがあるよ(下記)
>>465 >>474 >>479
(過去なんども繰り返し述べてきた通りだが、確率過程論の知識がないと、時枝不成立がなかなか理解できないのだろう)
>必ずXD=rD
(>>831より)
時枝の設定は、次の通り
スレ20 スレリンク(math板:18番)-
(抜粋)
過去スレ20 再録 スレリンク(math板:2-7番)
1.時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
・・・・
列r のD番目の実数r(D)を見て, 「第k列のD番目の箱に入った実数はs^k(D)=rD」と賭ければ,めでたく確率99/100で勝てる.
確率1-ε で勝てることも明らかであろう.
(引用終り)
ここで、実数値rDは、(-∞,+∞)の範囲をカバー出来ていなければ、的中確率99/100など得られない
だが、コイントスのIID 2値{0,1}のみとは、真っ向矛盾している
コイントスのIID 2値{0,1}のみを仮定すれば、実数値rDで的中確率99/100など得られるはずがない!
「必ずXD=rD」というが、例えばrD=e^π 又はrD=πなどの実数値(上記時枝記事記載の通り)では、コイントスの2値{0,1}は的中できるはずがない!!(^^
QED