現代数学の系譜 工学物理雑談 古典ガロア理論も読む72at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む72 - 暇つぶし2ch985:132人目の素数さん
19/07/15 17:35:03.10 P1u0YXuT.net
複素数は、
Z=|Z|(cosθ+i sinθ)
と極座標(距離と角度)の形式で表すことができます。
このとき、Z1とZ2の積を考えると、
Z1×Z2=|Z1|(cos(θ1)+i sin(θ1))|Z2|(cos(θ2)+isin(θ2))
=|Z1||Z2|(cos(θ1+θ2)+i sin(θ1+θ2))
となります。
この式の図形的意味を考えると、
(Z1にZ2を掛ける)=(Z1を|Z2|倍に拡大)+(Z1をθ2回転)
というように解釈できます(これは複素数を図形的に考えるときに重要です)。
さて、ここからオイラーの公式を使うと役に立つ理由 を説明します。
上で積を考えたときに,計算で気になるのは、
(cos(θ1)+i sin(θ1))×(cos(θ2)+isin(θ2)) =cos(θ1+θ2)+i sin(θ1+θ2)
の部分です。 この式は、本来なら加法定理を利用して整理すべきものですよね。
しかし,オイラーの公式を使えば、
(cos(θ1)+i sin(θ1))×(cos(θ2)+i sin(θ2)) =(eiθ1)×(eiθ2)
=ei(θ1+θ2) (ea×eb=ea+bを使った)
=cos(θ1+θ2)+i sin(θ1+θ2) (オイラーの公式を使った)
このように指数関数の性質を使い簡単に計算することができます (加法定理の計算を指数関数の積にすることができた)。
また,オイラーの公式を使えばド・モアブルの式は、(eiθ)n = ei nθ という,指数関数の性質である(ea)b=eabのことを言っているだけだということがわかります。
URLリンク(o.8ch.net)


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch