19/07/24 18:05:17.47 nT4vWSa7.net
その本ですが、著者が偉そうなくせに、間違いがある本ですよね。
杉浦光夫著『解析入門I』を読んでいます。
Σ_{n = 0}^{∞} {(-1)^n / (2*n)!} * z^(2*n)
と書いたとき、これは、
S_m := Σ_{n = 0}^{m} {(-1)^n / (2*n)!} * z^(2*n)
lim S_m を表わすのでしょうか?
それとも、整級数である
Σ_{n = 0}^{∞} a_n * z^n
a_n = 0 for n ∈ {1, 3, 5, …}
a_n = (-1)^(n/2) / n! for n ∈ {0, 2, 4, …}
を表わすのでしょうか?
まあ、どちらの意味にとっても同じことですが、
杉浦さんは混同しているようです。
以下の辺りを読むと混同していることが分かります。
「
次の二つの整級数は絶対収束する:
Σ_{n = 0}^{∞} {(-1)^n / (2*n)!} * z^(2*n),
…
」
杉浦光夫さんは、オイラーの公式を導くのに、
「(詳しく言えば定理2.3、命題I.5.3,2)を用いた)」と書いています。
ということは杉浦さんの頭の中は以下のようになっていたことになります:
e^(i*z) = cos(z) + i*sin(z)
e^(i*z)
=
1 + i/1! * z + i^2/2! * z^2 + i^3/3! * z^3 + i^4/4! * z^4 + i^5/5! * z^5 + i^6/6! * z^6 + i^7/7! * z^7 + …
=
1 + i/1! * z + -1/2! * z^2 + -i/3! * z^3 + 1/4! * z^4 + i/5! * z^5 + -1/6! * z^6 + -i/7! * z^7 + …
= (定理2.3)
(1 + 0 * z + -1/2! * z^2 + 0 * z^3 + 1/4! * z^4 + 0 * z^5 + -1/6! * z^6 + 0 * z^7 + …)
+