数学の本 第84巻at MATH
数学の本 第84巻 - 暇つぶし2ch557:132人目の素数さん
19/07/16 20:25:10.83 8CbDFjrq.net
アペリーのは ζ(3) だった。 ζ(2)=π^2/6 はバーゼル問題

558:132人目の素数さん
19/07/16 20:29:49.81 Lht3S83x.net
おっさんよ大志を抱け、アーサー・C・クラーク

559:132人目の素数さん
19/07/16 21:03:16.60 jdv3z171.net
>>531
アホなのに生意気ですみませんでした。
自分は数学や物理学は誤解しまくりだと思ってますよ。
でも数学から物理を全て説明出来るなんて思ったことないかな。
助けになるってイメージしかない。
それより>>522にあった教科書ありませんか?

560:132人目の素数さん
19/07/16 21:05:32.25 Lht3S83x.net
ねーよ、数学と物理を勉強しろ

561:132人目の素数さん
19/07/16 21:29:30.55 kxyEYrvv.net
つまみ食いで体系的知識を身に付けたいとかいう無理な願望に見えるが

562:132人目の素数さん
19/07/16 21:49:10.53 Lht3S83x.net
固有値は群論だけで出てくるよ、終了

563:132人目の素数さん
19/07/16 23:26:17.07 3aBqd+wX.net
つまみ食いでも或る種の才能あれば大域的な構造の地図を勝手に作り上げて土地勘よりかは普遍的な知識をでっち上げちゃうケースはあるよ。
まあ地政学的要衝なんて幾何学的直観持ち合わせてれば普通に勘づく。

564:132人目の素数さん
19/07/16 23:50:29.31 +o8FietQ.net
>>545
それは山のような計算をこなした人オンリー
というかちゃんと勉強した研究者でも研究分野全体からしたらつまみ食いレベルでしかない
それを埋める世界の概観図は勘ではなく計算と試行錯誤で作られる

565:132人目の素数さん
19/07/16 23:56:10.05 3aBqd+wX.net
>>546
自分の蛸壺を信じて掘り抜くのとはまた別の話だろ。
うまくいけば時計を持ったウサギが不思議の国とか鏡の国に連れてってくれるかもしれない。

566:132人目の素数さん
19/07/17 00:04:01.25 x08SptvD.net
>或る種の才能あれば
>うまくいけば
こういう前提を置けば何でも言えるよねw

567:132人目の素数さん
19/07/17 00:08:44.44 Ng065D2s.net
>>547
蛸壺を穿つような閉塞的なイメージを持っているのが間違い

568:132人目の素数さん
19/07/17 00:14:29.64 rK2KSEEN.net
>>549
ワームホール的なとんでもない抜け穴みたいなイメージで言ってるんだが?。
こういう大歩危小歩危は親知らず子知らずを掘り抜くような努力を京都疎水目線で小馬鹿にする側だろ。

569:132人目の素数さん
19/07/17 00:24:24.03 Ng065D2s.net
>>550
頭がおかしい人が書いているように思える。

570:132人目の素数さん
19/07/17 00:31:08.19 rK2KSEEN.net
オカケツみたいに上空へ移行してみたいもんだね(笑)。

571:132人目の素数さん
19/07/17 01:01:55.66 DkuQ3Yw8.net
>>522だけど、つまみ食いでもいいからそういう本あれば教えて欲しいな。
自分は問題の多い教科書は苦手だし受験ですら最低限のテクニックしか持ち合わしてなかったし必要性感じてない。
理想は一般的な公立高校の高校数学の教科書レベルで大学の数学まであのノリで書いてくれてるのがいい。
わかりやすく説明するために雰囲気重視で正確性に欠ける本は苦手だな。
チャート式とか似たような問題大過ぎだし説明多すぎだしあそこまでやらせる意味がわからん。

572:132人目の素数さん
19/07/17 01:19:31.85 rK2KSEEN.net
普通にオイラーの公式表題にしてるの適当に読めばいいだけだな。

573:132人目の素数さん
19/07/17 01:26:20.25 DAG1q65A.net
思いついたことをそのまんま書いちゃうタイプなのかな
最低限自分の中で何を聞きたいのか整理してから聞くべし

574:132人目の素数さん
19/07/17 07:49:38.82 e5/IcOTW.net
数オリやれや!

575:132人目の素数さん
19/07/17 08:16:34.65 z3hr8Vx5.net
斎藤正彦著『数学の基礎』の公理的集合論の章ですが、分かりにくいですね。
Introduction to Set Theory, Revised and Expanded (Chapman & Hall/CRC Pure and Applied Mathematics)
by Karel Hrbacek and Thomas Jech
の第1章を読んでいますが、『数学の基礎』の公理的集合論の章と同じようなことが書かれていますが、
よく分かります。

576:132人目の素数さん
19/07/17 09:28:59.20 4kFlrWxy.net
>>555
ただの夢見る馬鹿だろ>>553

577:132人目の素数さん
19/07/17 09:30:08.54 YB4t2Asj.net
僕は〇〇して数学がこれから出来るようになるんだ

578:132人目の素数さん
19/07/17 09:47:03.26 4kFlrWxy.net
馬鹿にも優しくしてくれるは予備校まで

579:132人目の素数さん
19/07/17 10:59:35.39 rk6KUxou.net
>>522
つまみ食い的な感じで良いなら、吉田武の本。
虚数の情緒、オイラーの贈物、素数夜曲。
全部、東海大学出版会。

580:132人目の素数さん
19/07/17 12:35:37.26 NDKEfKKt.net
俺ID:4kFlrWxyこいつみたいな考え方とは反対
専門書でも小平の解析入門や松本の多様体みたいに平易な語り口調で、しかし同時に厳密にで高度な内容まで学べるような本は増えて欲しい
難解な理論を知ってることにプライドを置いてるしょうもない奴ってチラホラ居るよな

581:132人目の素数さん
19/07/17 12:38:43.19 opKQd6TP.net
つまみ食いという発想が学習初期に出る時点で数学というか学問に向いてないから趣味で好きにやればいいと思う

582:132人目の素数さん
19/07/17 12:50:58.29 opKQd6TP.net
>>562
それが学問に向かう姿勢として正常
小平の解析入門、松本の多様体、どちらも王道の真ん中に位置する良書
30overなら高校数学は教科書でササっと復習してすぐ小平に取りかかる位の能力ガッツスピード感が欲しい

583:132人目の素数さん
19/07/17 13:13:31.75 sowSLzdF.net
>>562
俺もお前みたいな馬鹿には反対
まともな数学の本だろ
>小平の解析入門や松本の多様体
>>522のレベルは不明だが大


584:学レベルの物理も数学も勉強するのは嫌だで、 自分の答えが書いてある本を教えてくれ、といってるのだが、違うか、アホ



585:132人目の素数さん
19/07/17 13:38:45.86 NDKEfKKt.net
>>565
なにID変えてんのか知らんがまぁいいか
>まともな数学の本だろ
まともかどうかの話じゃなくてお前の>>560がいう「優しくしてくれる」っていう言葉に対するレスな
つまり専門数学という世間的には敷居が高いとされている学問分野であってもその敷居を低くしてくれるよう「優しく」解説してくれる本の必要性としてレスしたまで。
すり替えてんのによく人に馬鹿呼ばわりできるな
それと>>522の要点は「高校数学で問題は必要最低限で広い範囲をシンプルにまとめ繋げてくれて頭をスッキリさせてくれるもの」、
「大学の数学が必要であればそういうものでもかまいません」、
>>553では我が儘言ってるが「つまみ食いでもいい」、「問題の多い教科書は~必要性感じてない。」程度であって、
「大学レベルの物理も数学も勉強するのは嫌」とは言ってない。
お前読み過ぎてんぞ

586:132人目の素数さん
19/07/17 13:46:16.55 t3LRXOIL.net
>>565
読解に難有り(笑)

587:132人目の素数さん
19/07/17 13:59:30.44 z3hr8Vx5.net
>>557
の本の演習問題ですが、解答をお願いします。
Show that P(X) ⊂ X is false for any X.
This proves again that a "set of all sets" does not exist.

588:132人目の素数さん
19/07/17 14:06:03.65 z3hr8Vx5.net
>>568
多分、簡単だと思います。
後半は分かりました。
すべての集合の集合が存在したと仮定し、それを U とする。
前半より、 P(U) ⊂ U は偽です。
よって、 u ∈ P(U) ∧ ¬ (u ∈ U) であるような元 u が存在します。
これは、一方 U の定義より、 u ∈ U です。
これは矛盾です。

589:132人目の素数さん
19/07/17 14:21:59.97 TO62L40e.net
>>566
論点ずらし失敗

590:132人目の素数さん
19/07/17 14:22:31.62 TO62L40e.net
>>567
馬鹿のいうことはわからん

591:132人目の素数さん
19/07/17 14:30:56.99 tCapHXMq.net
>>503
高校までの数学であれば数学読本は良いと思うけど、どのへんがゴミなの?

592:132人目の素数さん
19/07/17 14:33:00.18 PViYjMR6.net
岩波から出てる宇沢って人の本がイマイチ、立読みしたけど、内容が俺には理解できない
数学読本はすんなり入ってくるのにな

593:132人目の素数さん
19/07/17 14:35:52.07 Ng065D2s.net
>>568
対角線論法を使うのかな?

594:132人目の素数さん
19/07/17 14:37:21.35 z3hr8Vx5.net
>>574
いや、この問題の周辺の他の演習問題からすると、多分そんなちょっと高度な論法は使わない
簡単な問題だと思います。

595:132人目の素数さん
19/07/17 14:37:51.80 z3hr8Vx5.net
>>572
数学読本がゴミだとすると高校の教科書はもっとゴミだと思います。

596:132人目の素数さん
19/07/17 14:39:12.97 z3hr8Vx5.net
>>573
ぱっと見たことしかありませんが、宇沢さんの本はきちっとしていない印象です。
いい本だとは思いませんでした。
松坂さんの本は生真面目な本だと思います。

597:132人目の素数さん
19/07/17 14:42:18.52 z3hr8Vx5.net
>>574
ちなみに、
>>557
の本には、
>>568
の演習問題の前に、いくつかの集合論の公理が紹介されています。
数理論理学などは使われていない素朴な本ですが、公理に基づいて
証明していくような本です。

598:132人目の素数さん
19/07/17 14:45:18.61 z3hr8Vx5.net
>>572
松坂和夫さんの本の良さは、扱う内容は高校レベルですが、高校の教科書よりも、
書き方や説明が大学レベルの本に近いところにあると思います。
宇沢さんの本は書き方や説明も高校レベルだったと思います。
なので、宇沢さんの本はゴミだと思います。

599:132人目の素数さん
19/07/17 14:48:43.97 z3hr8Vx5.net
松坂和夫さんの本で印象に残っているのは、
ペル方程式
について書いてあることです。
あと、集合論のBernsteinの定理も書いてありました。
不等式についてのいろいろな性質をいくつかの公理から導くというのも、高校生には面白いかもしれません。

600:132人目の素数さん
19/07/17 14:51:23.96 z3hr8Vx5.net
高校の教科書に載っている内容も、不等式の性質を公理から導くという例のように、より深く�


601:オっています。 そして、その合間にペル方程式やピタゴラス数などの高校教科書では扱われないが、高校レベルの少し 面白い話題があります。



602:132人目の素数さん
19/07/17 14:53:18.40 z3hr8Vx5.net
微分積分について印象に残っているのは、平均値の定理を使っていろいろな性質を導いていることです。
高校の教科書では、平均値の定理を含めて、図から当たり前で説明が終わってしまいます。

603:132人目の素数さん
19/07/17 14:57:14.88 Ng065D2s.net
P(X)⊂Xと仮定するとX∈P(X)⊂X となるからX∋X∋X∋…となって駄目って論法かな?

604:132人目の素数さん
19/07/17 15:21:44.71 9P50w4Yt.net
正則性公理により無限降下列は存在しない

605:132人目の素数さん
19/07/17 15:24:09.97 9P50w4Yt.net
もしくは2^|X|=|P(X)|<=|X|はカントールの定理に反する

606:132人目の素数さん
19/07/17 15:50:05.41 QQCXZMLE.net
・∃ S = {X,X} = {X} (Axiom of Pair) ⇒ ∀y ∈ S y = X
・∃ y ∈ S y はS 内の ∈ ミニマム ( Axiom of Regularity )
⇒ X は S 内の ∈ ミニマムである
P(X) ⊂ X だとしたら、X ∈ X である (ミニマムではない) 【矛盾】

607:132人目の素数さん
19/07/17 15:58:01.95 Grh+htih.net
>>572
微積分はスレチ、100歩譲って微積分なら解析入門、数学解析程度以上

608:132人目の素数さん
19/07/17 18:24:06.93 z3hr8Vx5.net
>>583-586
ありがとうございます。
すみません。ヒントが書いてありましたが、書き忘れました。
Hint:
Let Y = {u ∈ X | ¬(u ∈ u)};
Y ∈ P(X)
but
¬(Y ∈ X).

609:132人目の素数さん
19/07/17 18:29:05.32 sxT043is.net
初学者には無味乾燥感がある書き方です
一方曲面の曲がり具合とは関係ないオイラー数という位
相的不変量とが不思議なことに等式で結びついたのがガウス・ボンネの定理です。つまり微
分幾何学=位相幾何学という驚愕の美しい等式です。関連参考書「曲線・曲面と接続の幾何」小沢哲也
、「幾何学'V微分形式」坪井俊、
「平面図形の位相幾何」小沢哲也には微分形式の解説とド・ラーム理論が詳しく
書かれています。微分幾何学の本の最後にしばしば解説されるガ
ウス・ボンネの定理はネットで「SSH数学図形」微分幾何の素晴らしい解説あり。
ネットで森田先生の講演は必見です。また「現代数学の土壌」の66頁から71頁の内容も素晴らしいので必見です。
数理アーカイブズの東京大学 オープンキャンパス2004 今野宏先生の動画でも学べます。
参考本には数式がほとんどない「曲面の不思議」郡敏昭

610:132人目の素数さん
19/07/17 18:32:16.67 sxT043is.net
自然界の現象はすべて「エネルギーを最小にする」とういう単
純な原理に従っている。この物理の大法則を人類は研究してきたのだ。ガ
リレオの振り子、サイクロイド曲線。光は直進する、言い換えればA地
点からB地点まで移動するエネルギーが「最小=最短距離である」ということなのである。
リーマン幾何では  「Cycloidは曲がった世界の"直線"である」 となります。相対論を理
解するための最初の関門は曲がった空間での平行移動(線形接続)と測地線(最小の距離)の概念。
つまりの直交座標⇒斜交座標:Euclid平面⇒曲面(多様体)。つまり平坦なリーマン多様体=
Euclid平面とみなす。接続=共変微分接線ベクトル同士が平行=共変微分=0,斜
交座標で考察する曲面⇒平行移動(線形写像)アファイン接続、リー
マン多様体でのアファイン接続をリーマン接続(=Levi-Civita接続)という。接
平面に内積(リーマン計量)を入れて空間に距離が定め,各点で曲線の接線ベクトルの長さが積分で計算出来る。

611:132人目の素数さん
19/07/17 18:33:21.29 z3hr8Vx5.net
それと、
>>568
の演習問題よりも前に書かれている公理のリストは以下です:

■The Axiom of Existence:
There exists a set which has no elements.
■The Axiom of Extensionality:
If every element of X is an element of Y
and every element of Y is an element of X,
then X = Y.
■The Axiom Schema of Comprehension:
Let P(x) be a property of x. For any set A, there is a set B
such that x ∈ B if and only if x ∈ A and P(x).
■The Axiom of Pair:
For any A and B, there is a set C such that x ∈ C if and only if x = A or x = B.
■The Axiom of Union:
For any set S, there exists a set U such that x ∈ U if and only if x ∈ A for some A ∈ S.
■The Axiom of Power Set:
For any set S, there exists a set P such that X ∈ P if and only if X ⊂ S.

612:132人目の素数さん
19/07/17 20:10:50.91 QQCXZMLE.net
(∃X) P(X) ⊂ X を仮定する。
Y := {u ∈ X | ¬(u ∈ u)} .... (a) とする。
分出公理 (Jech本では Axion of .... Comprehension に相当?)
より、Y は「集合」として存在する。
(a)より明らか に Y ⊂ X 、よって Y ∈ P(X) (∵ P(X)はXの部分集合を全て集めたもの)
(Y ∈ P(X)) ∧ (P(X) ⊂ X) より Y∈ X (∵ 部分集合の定義)
1. Y∈Y の場合
 Y∈ X であるが Y∈Y。(a)の条件に合致しないので ¬(Y ∈ Y)
2. ¬(Y∈Y) の場合
 Y∈ X であり ¬(Y ∈ Y)。 (a)の条件に合致するので Y ∈ Y
いづれにしても矛盾する。
よって ¬( (∃X) P(X) ⊂ X )
⇒ (∀X) ¬(P(X) ⊂ X) つまり P(X) ⊂ X は常に偽である。

613:132人目の素数さん
19/07/17 20:49:57.37 z3hr8Vx5.net
あ、分かりました。
Y = {u ∈ X | ¬(u ∈ u)};
The Axiom Schema of Comprehensionにより、 Y は集合である。
Y ⊂ X は明らか。
∴Y ∈ P(X)
もし、 Y ∈ Y ならば ¬(Y ∈ Y) となり矛盾。
∴¬(Y ∈ Y)
∴¬(Y ∈ X ∧ ¬(Y ∈ Y))
∴¬(Y ∈ X) ∨ Y ∈ Y
¬(Y ∈ Y) だから ¬(Y ∈ X)
以上より、 Y ∈ P(X) ∧ ¬(Y ∈ X)
∴¬(P(X) ⊂ X)

614:132人目の素数さん
19/07/17 20:54:54.71 z3hr8Vx5.net
>>592
ありがとうございました。

615:132人目の素数さん
19/07/17 22:56:42.09 WRUlfWt4.net
馬鹿アスペが好きな論理厨

616:132人目の素数さん
19/07/18 07:59:33.68 MUH5+RGZ.net
Introduction to Set Theory, Revised and Expanded (Chapman & Hall/CRC Pure and Applied Mathematics)
by Karel Hrbacek and Thomas Jech
の第1章を読んでいます。

■The Axiom of Existence:
There exists a set which has no elements.
■The Axiom of Extensionality:
If every element of X is an element of Y
and every element of Y is an element of X,
then X = Y.
■The Axiom Schema of Comprehension:
Let P(x) be a property of x. For any set A, there is a set B
such that x ∈ B if and only if x ∈ A and P(x).
■The Axiom of Pair:
For any A and B, there is a set C such that x ∈ C if and only if x = A or x = B.
■The Axiom of Union:
For any set S, there exists a set U such that x ∈ U if and only if x ∈ A for some A ∈ S.
■The Axiom of Power Set:
For any set S, there exists a set P such that X ∈ P if and only if X ⊂ S.
----------------------------------------------------------------------------------------
■Weak Axiom of Pair:
For any A and B, there is a set C such that A ∈ C and B ∈ C.
■Weak Axiom of Union:
For any S, there exists U such that if X ∈ A and A ∈ S, then X ∈ U.
■Weak Axiom of Power Set:
For any set S, there exists P such that X ⊂ S implies X ∈ P.
Prove the Axiom of Pair, the Axiom of Union, and the Axiom of Power Set using these weaker versions. [Hint: Use also the Comprehension Schema.]

617:132人目の素数さん
19/07/18 09:51:33.70 AZjNt35q.net
函数解析と微分方程式(現代数学演習叢書 4)もう復刊しないの?
指導教官が絶賛しててほしいんだけど・・・

618:132人目の素数さん
19/07/18 09:55:20.62 8YB/Gqn2.net
>>597
今のところまだ、投票お願いします
URLリンク(www.fukkan.com)

619:132人目の素数さん
19/07/18 09:59:07.53 KOPv3QTN.net
アマゾンで5000円で出品されてるぞ

620:132人目の素数さん
19/07/18 13:18:32.84 MUH5+RGZ.net
URLリンク(page.auctions.yahoo.co.jp)
ブックオフですが、いくらで買い取ったものをこんな高値で売ろうとしているんですかね。

621:132人目の素数さん
19/07/18 13:19:11.15 MUH5+RGZ.net
URLリンク(page.auctions.yahoo.co.jp)

622:132人目の素数さん
19/07/18 14:19:44.70 MUH5+RGZ.net
慣れが必要ですね。

A, B が与えられたとき、
Weak Axiom of Pairより、
A ∈ C ∧ B ∈ C となる C が存在する。
The Axiom Schema of Comprehensionにより、
x ∈ D

x ∈ C ∧ (x = A ∨ x = B)



623:成り立つような集合 D := {x ∈ C | x = A ∨ x = B} が存在する。 A ∈ C ∧ B ∈ C だから、 x ∈ C ∧ (x = A ∨ x = B) ⇔ (x ∈ C ∧ x = A) ∨ (x ∈ C ∧ x = B) ⇔ (x = A) ∨ (x = B)



624:132人目の素数さん
19/07/18 14:34:38.14 MUH5+RGZ.net
S が与えられたとき、
Weak Axiom of Unionより、
A ∈ S ∧ X ∈ A ⇒ X ∈ U
となるような集合 U が存在する。
V := {X ∈ U | ∃A such that A ∈ S ∧ X ∈ A} とおく。

X ∈ V

∃A such that A ∈ S ∧ X ∈ A

X ∈ A for some A ∈ S

∃A such that A ∈ S ∧ X ∈ A
A ∈ S ∧ X ∈ A ⇒ X ∈ U だから
∃A such that A ∈ S ∧ X ∈ A

(∃A such that A ∈ S ∧ X ∈ A) ∧ (X ∈ U)

X ∈ V

625:132人目の素数さん
19/07/18 14:39:55.18 F/QFWavy.net
クトル解析・微分幾何・テンソル・微分形式・多様体はすべて表裏一体の世界です。
まずyou tube で「大学 講義 ベクトル解析」で多変数関数の微
分積分学としてのベクトル解析「テンソルとは何か?」「曲線の曲率」「フレネ・セレの公式」など
を学ぼう。追記 2018.4.22のネットブログ「日曜数学者 tsujimotter の「趣味で数学」実践ノート」のド
・ラームコホモロジーとフーリエ級数の記事がメチャよく分かる。追記「数学セミナー2018.12号」の中
内伸光先生の解説がメチャ素晴らしいので必読されたし。ネット検索で「双対空間(dual space)」の電
通大 山田先生PDFが最高の解説。「アインシュタインとファインマンの理論を学ぶ本 」竹内薫
のp.125の微分形式の解説が一番わかり易い。「連続体力学の話法」清水 昭比古「ベ
クトル解析 -道具と考え ていねいに-」上野和之などの方がテンソルがわかりやすい。双
対性については「理工系のための トポロジー・圏論・微分幾何  双対性の視点から」谷
村省吾の方が頭に入りやすい。「例題形式で探究する微積分学の基本定理 数
田茂之は多様体の最高の入門書です。ガウスがすごいのはユークリッド空間の平
らな空間で展開されていた微分積分学を曲がった空間に適用しガウス曲率を発見し微
分幾何学を研究したこと。ガウス曲率とは曲面の各点における曲がり具合を実
数により眼に見える形で表現したもの。また曲面の曲がり具合(微積分)とは関係ない
(位相数学の)オイラー数という位相的不変量とが不思議なことに等式で結びついたのがガウ
ス・ボンネの定理です。つまり微分幾何学=位相幾何学という驚愕の美しい等式です。つまり数
学者の頭の中ではベクトル解析というと、局所的には微分幾何、大域的にはト
ポロジー(位相幾何)を考えることになる。三次元ユークリッド空間では直交座標を取ることです.三
次元ユークリッド空間が一つあれば,全

626:132人目の素数さん
19/07/18 14:41:57.27 MUH5+RGZ.net
S が与えられたとき、Weak Axiom of Power Setより、
∃P such that X ⊂ S ⇒ X ∈ P
Q := {X ∈ P | X ⊂ S} とおく。
X ∈ Q ⇒ X ⊂ S
X ⊂ S ⇒ X ∈ P だから、
X ⊂ S ⇒ X ⊂ S ∧ X ∈ P ⇒ X ∈ Q

627:132人目の素数さん
19/07/18 14:57:34.88 OCM1wBAg.net
>>604
コテつけて

628:132人目の素数さん
19/07/18 15:40:31.30 MUH5+RGZ.net
Coq/SSReflect/MathCompによる定理証明:フリーソフトではじめる数学の形式化
↑この本を読むのに必要な予備知識が得られる本を教えてください。

629:132人目の素数さん
19/07/18 15:52:48.96 i8oPcagO.net
毎年たくさんの質の低い線形代数の入門書が出てるけど、あれってなんなん?
雑魚講師が生徒に買わせて小遣い稼ぎするために出してるん?
等しく価値がない。

630:132人目の素数さん
19/07/18 16:02:19.94 +Bmz1fAS.net
理工系の学生>>数学科の学生、ターゲット層が多い

631:132人目の素数さん
19/07/18 16:30:22.00 tqp5dVHW.net
ほー

632:132人目の素数さん
19/07/18 16:51:59.92 PVsudWvY.net
大類
おおるい
おるい
汚類

633:132人目の素数さん
19/07/18 17:32:01.59 MUH5+RGZ.net
Let A be a set; show that a "complement" of A does not exist. (The "complement" of A is the set of all x such that ¬(x ∈ A).)

634:132人目の素数さん
19/07/18 17:38:18.24 MUH5+RGZ.net
あ、分かりました。
X ∈ B ⇔ ¬(X ∈ A)
となるような集合 B が存在したとする。
X を任意の集合とする。
X ∈ A ∨ ¬(X ∈ A)
が成り立つ。
∴ X ∈ A ∨ X ∈ B
The Axiom of PairおよびThe Axiom of Unionにより
A ∪ B は集合である。
すべての集合の集合は集合ではないからこれは矛盾である。

635:132人目の素数さん
19/07/18 17:43:40.79 MUH5+RGZ.net
公理的集合論って公理をたくさん設定しただけですけど、怪しげに見えた初等集合論の議論が
すっきりした感じになりますね。

636:132人目の素数さん
19/07/18 17:51:42.73 bymQVZ1Y.net
自分の本の内容をpdfで全部公開してる人って何のために本出してるの?

637:132人目の素数さん
19/07/18 17:57:32.47 MUH5+RGZ.net
初等的集合論の本を読んでも、選択公理がなぜ必要なのかよく分かりませんが、公理的集合論の本
ならきっと分かるんでしょうね。
>>557
の本の第8章が「選択公理」なのですが、読むのが楽しみです。

638:132人目の素数さん
19/07/18 17:57:52.19 i8oPcagO.net
>>615
そんな奴いるのかね?

639:132人目の素数さん
19/07/18 18:26:09.84 MUH5+RGZ.net
Prove that ∩ S exists for all S ≠ φ.
Where is the assumption S ≠ φ used in the proof?

640:132人目の素数さん
19/07/18 18:36:51.34 MUH5+RGZ.net
S ≠ φ だから、 ∃A such that A ∈ S
(X ∈ B for all B ∈ S) ⇒ X ∈ A
The Axiom Schema of Comprehensionにより、
X ∈ C ⇔ X ∈ A ∧ X ∈ B for all B ∈ S
が成り立つような集合 C が存在する。
(X ∈ B for all B ∈ S) ⇒ X ∈ A だから、
X ∈ C ⇔ X ∈ B for all B ∈ S
が成り立つ。
∴ C = ∩ S

641:132人目の素数さん
19/07/18 18:51:04.34 KOPv3QTN.net
こういう日本語の使い方をする奴が大嫌い
位相空間Xの部分集合族Fが局所有限であるとは、Xの各点が高々有限個のFの元としか共通部分を持たないような近傍を持つときにいう。
こういう日本語の使い方をする方が好き
局所有限の定義は「任意の点 x∈X に対して、x の近傍 U が存在して、U と交わる A の元が有限個である」というものです。

642:132人目の素数さん
19/07/18 19:19:26.78 MUH5+RGZ.net
例えば、順序対について、
(a, b) := {a, {a, b}}
と定義するなどと書かれている本があります。
なぜこのように定義するのか全く意味不明でした。
ところが、公理的集合論では、すべてのオブジェクトが集合ですから、このように
定義するのは非常に自然なことです。

643:132人目の素数さん
19/07/18 19:43:39.36 K56f8Fjz.net
可換環論って、クソ難しいよな
こんなん余裕ですか?

644:132人目の素数さん
19/07/18 20:16:56.64 FZiHOK3l.net
>>619
(∃A)(∀x){ (x∈A) ⇔ ((∃B) x∈B∈S) } (Ax. of Union)
∃C := { x∈A | (∀B∈S) x∈B } (Ax. of Comprehension)
x∈∩S ⇔ (∀B∈S)x∈B (∵∩S定義)
⇔ ((∀B∈S)x∈B) ∧ ((∃B) x∈B∈S) (∵ S≠∅)
⇔ ((∀B∈S)x∈B) ∧ (x∈A) ⇔ x∈C (∵ C定義)
∴ C = ∩S
例えば S=∅ の時に ∩S =∅ としてしまうと、
(∀x)( x∈∩S ⇔ (∀B∈S)x∈B ) ≡ (∀x)( 偽 ⇔ 真 ) となってしまい都合が悪いのです。

645:132人目の素数さん
19/07/18 20:24:13.22 FZiHOK3l.net
> (∃A)(∀x){ (x∈A) ⇔ ((∃B) x∈B∈S) } (Ax. of Union)
S≠∅ より ∃A∈ S
のほうが良さげ... 使わんでもいい公理は使わんほうが綺麗か

646:132人目の素数さん
19/07/18 20:38:28.86 vFVATvwh.net
>>615
紙の装丁された本が好きな人もいる。
契約次第だが、出版物と同じPDFとは限らんし。

647:132人目の素数さん
19/07/18 20:44:07.99 MUH5+RGZ.net
>>623
ありがとうございました。

648:132人目の素数さん
19/07/18 20:45:52.42 MUH5+RGZ.net
>>615
本のあちこちのページを素早く見るには、紙の本のほうがいいと思います。

649:132人目の素数さん
19/07/18 20:45:54.49 IU6FheXH.net
>>608
たとえば?

650:132人目の素数さん
19/07/18 20:54:01.09 MUH5+RGZ.net
>>623
S = φ のとき、
∀X ∈ ∩ S
となるため、 ∩ S は集合じゃないですね。

651:132人目の素数さん
19/07/18 21:06:02.43 MUH5+RGZ.net
(a, b) = (a', b


652:') if and only if a = a' and b = b' Proof: If a = a' and b = b', then, of course, (a, b) = {{a}, {a, b}} = {{a'}, {a', b'}} = (a', b'). The other implication is more intricate. Let us assume that {{a}, {a, b}} = {{a'}, {a', b'}}. If a ≠ b, {a} = {a'} and {a, b} = {a', b'}. … と書いてあります。 If a ≠ b, {a} = {a'} and {a, b} = {a', b'}. のところが雑ですね。



653:132人目の素数さん
19/07/18 21:33:39.81 MUH5+RGZ.net
(A) 任意の a, b, c に対し、 a ≠ b ならば {a, b} ≠ {c} である。
証明:
{a, b} = {c} と仮定して矛盾を導く。
a ∈ {a, b} = {c} より、 a = c である。
b ∈ {a, b} = {c} より、 b = c である。
∴ a = b であるが、これは仮定に反する。
(B) Let us assume that {{a}, {a, b}} = {{a'}, {a', b'}}. If a ≠ b, {a} = {a'} and {a, b} = {a', b'}.
証明:
b ∈ {a, b} である。
b ≠ a であるから、 ¬(b ∈ {a}) である。
∴ {a, b} ≠ {a}
a' ≠ b' である。
なぜなら、 a' = b' と仮定すると、
{{a}, {a, b}} = {{a'}, {a', b'}} = {{a'}, {a'}} = {{a'}}
となり、(A)に反するからである。
{a} ∈ {{a}, {a, b}} = {{a'}, {a', b'}} だから、
{a} = {a'} ∨ {a} = {a', b'} である。
(A)により、 {a} ≠ {a', b'} である。
∴ {a} = {a'} である。
{a, b} ∈ {{a}, {a, b}} = {{a'}, {a', b'}} だから、
{a, b} = {a'} ∨ {a, b} = {a', b'} である。
(A)により、 {a, b} ≠ {a'} である。
∴ {a, b} = {a', b'} である。

654:132人目の素数さん
19/07/18 21:41:49.74 MUH5+RGZ.net
Introduction to Set Theory, Revised and Expanded (Chapman & Hall/CRC Pure and Applied Mathematics)
by Karel Hrbacek and Thomas Jech
の本の第2章のはじめのところを読んでいますが、
>>630
のようなギャップのある個所が早くも出てきました。
嫌な予感がします。

655:132人目の素数さん
19/07/18 22:54:40.30 AUKYy+s1.net
>>632
>嫌な予感がします。
早くも、嫌な予感がしてきました。ww

656:Frank student
19/07/19 01:33:36.89 INZ0NY63.net
よくわからんが 定義の問題じゃないの
集合{a,b}と順序付けされた集合(a,b)を導入してんじゃないの?
(注)Introduction to Set Theory, Revised and Expanded (Chapman & Hall/CRC Pure and Applied Mathematics)
by Karel Hrbacek and Thomas Jech
の本の第2章のはじめのところ

657:132人目の素数さん
19/07/19 03:54:16.08 SgidTMnr.net
>>600
一松先生の「多変数解析函数論」図書館でちらっと見たこと
あるけど、やたらと難しげな印象だった。もっと印象的だった
のは、付録に出ているグロタンディエクの写真。な、なんや
このおっさん「つるっぱげ」やんか!(スキンヘッドとも言う)

658:132人目の素数さん
19/07/19 11:38:06.39 ec28frqd.net
フェルマーの最終定理の証明を目的とした(フェルマー予想(斎藤毅)以外の)和書でおすすめはありますか?
検索してもサイモン・シンのような一般向け解説本が引っかかります

659:132人目の素数さん
19/07/19 12:12:00.78 WNBqmsgl.net
>>636
斎藤のフェルマー予想読んだ感想はどうだった?

660:132人目の素数さん
19/07/19 12:35:00.11 61oLN5Ot.net
リーマン予想の本読めや
フェルマーなんてインチキ数学者なんだから

661:132人目の素数さん
19/07/19 14:29:34.30 SfObd8hw.net
■ ≠ ▲ とする。
<a, b> := {{a, ■}, {b, ▲}}
とする。
<a, b> = <a', b'> ⇒ a = a' ∧ b = b'
を示せ。

662:132人目の素数さん
19/07/19 15:37:50.97 9Tokuv6r.net
私には難しい予備知識が必要な中・上級レベルです。
小さいのでできればPDFで読めれば嬉しいクトルは多変数を扱う数
学ので勾配・回転・発散)は曲面上での多変数の微積分学です。スト
次元の曲面とその曲面定義れた関数に関し,線積分と面分を関係づける定理です.
すべて、微分形を用いると簡単な形で表せる。p.18に有るが頭の整理に役立つ。微分
形式とはさまざまな演算が座標変換で不変であるように工夫された概念である.URLリンク(ufcpp)
.nt/study/math/manifold/difform/ 未確認飛行のブログ解説が丁寧でわかりやすい。追
記「数学セミナー2018.号」の筆者の解メチャ素晴しいので必読されたし。追
記 2018.2のネットブログ「日曜数学 tsumotter の「趣味で数学」実践ノート」のド
空間(dual space)」の電通山先生PDFが最高の解説。これらの記事でその深淵さがよくわかりました。
形してから解くのが一般的で、座変換に強い理論が必要になる。座標変換することは,多
様体の上をちょこっと移動するのと同じことになります。「オイーの公式がわる」原岡を必読。
微分が絡むと座標変換が難しくなるが、微分が絡んでいても、ある条件下では座標変換が簡
二大村平で外積について学ぶこと。
多様体の一点での近傍の近似図形(曲線を近似したのが接線、曲
を近似したら接平面など)としてn次元接ベトル空間を考え、そこでは線
形代数が活用でき、各点ごとに定まる接ベル空間を全ての点について寄せ集めた集合を接ベクトル
束と呼称する。この各点でバラバラの接ベクトル空間を集める道具として積
分がある。座標変換の滑らかさを要請するためn回迄の全ての導関数が連続
である、微能回数を制限しない関数での考察をする。 引き続き読むべきは「理工系のための
トポ何双対性の視点から 」谷村の素晴らしい解
説p.174です。つまり反対称テンソ場だけを微分形式と呼んで特別扱いすると述べている。「多変数関数論 ( 21) 」の第
7解説とド・ラーム理論が詳しく書かれています。微分 今野の動画でも学べます。
動画で学べる、東大数理ビデの2014年度 数学 「 小平邦彦氏の生涯と業績 」の3時限目の
宮岡 (東京大学・教授)の講義『 面の小平理論 』を見て感動

663:132人目の素数さん
19/07/19 16:21:09.06 OFXWrKo2.net
>>640
改行の箇所についてもっとちゃんと配慮したまえ
書籍のように1行の文字数を一定にせねばならないのでなければ
改行は文章の論理的な繋がりの強弱(言い換えれば文章の論理的な区切り)に従って行わねばならない
また長い文章で多数の文から構成される場合、文章を複数の段落に切り分けて
間に空行を挟むことも読み易さの観点から重要な作業だ
君の640は論外、反省したまえ

664:132人目の素数さん
19/07/19 17:01:23.26 qrf62Y8k.net
>>635
グロは若い頃の写真は別人だし
晩年はジェダイ・マスターの雰囲気だったw

665:132人目の素数さん
19/07/19 17:17:49.70 61oLN5Ot.net
おまえらって、何者なんだ?

666:132人目の素数さん
19/07/19 17:39:59.47 7CIxbz6/.net
>>642
朝鮮漬けつくるのが趣味だったらしいね。遁世後は。

667:132人目の素数さん
19/07/19 20:23:59.78 vnOHb4Nx.net
>>643
わたしは5ちゃねらー
あなたも5ちゃねらー
みんな5ちゃねらー

668:132人目の素数さん
19/07/19 20:47:24.03 UUG6yFcF.net
>>643
中卒ニートで40代、新潟在住

669:132人目の素数さん
19/07/19 20:55:31.03 SfObd8hw.net
>>639
解答:
(i) a ≠ b のとき
(i-1) {a, ■} = {b, ▲} のとき
■ = b
▲ = a
{{a, b}} = <a, b> = <a', b'> = {{a', b}, {b', a}} だから
{a, b} = {a', b} = {b', a} である。
∴ a = a' ∧ b = b'
(i-2) {a, ■} ≠ {b, ▲} のとき
(i-2-a) {a, ■} = {b', ▲} のとき
{b, ▲} = {a', ■}
∴ a = ▲ ∧ b' = ■ ∧ a' = ▲ ∧ b = ■
∴ a = a' ∧ b = b'
(i-2-b) {a, ■} ≠ {b', ▲} のとき
{a, ■} = {a', ■} ∧ {b, ▲} = {b', ▲} だから
a = a' ∧ b = b'
(ii) a = b のとき
もしも、 {a, ■} = {b, ▲} であるならば、
■ = b = a = ▲ となり矛盾が起きる。
∴ {a, ■} ≠ {b, ▲} である。
(ii-1) {a, ■} = {b', ▲} のとき
{b, ▲} = {a', ■} である。
また、 ▲ = a ∧ ■ = b' である。
∴ {a} = {b, a} = {a', b'} である。
∴ a = b = a' = b' である。
(ii-2) {a, ■} = {a', ■} のとき
{b, ▲} = {b', ▲} である。
a ≠ a' と仮定すると、 a = ■ = a' となり矛盾が起こる。
よって


670:、 a = a' である。 同様にして、 b = b' である。



671:132人目の素数さん
19/07/19 21:57:34.65 UUG6yFcF.net
シンプレテック多様体の入門書教えて

672:132人目の素数さん
19/07/19 22:06:27.08 qrf62Y8k.net
植田一石のSGC ライブラリか岩波の深谷

673:132人目の素数さん
19/07/19 22:12:18.23 UUG6yFcF.net
>>649
ありがとう、しかし
数物系のためのシンプレクティック幾何学入門  は電子版しかない
シンプレクティック幾何学 入門じゃないだろ、読むと立ちくらみがする

674:132人目の素数さん
19/07/19 23:43:04.93 8mkbzvNV.net
>>637
読んだことはないのですが、
他にフェルマーの最終定理の証明を目的とした和書を聞いたことがないので、選択肢として知っておきたく。

675:132人目の素数さん
19/07/20 10:54:40.95 kOzM+Vix.net
ツイッターのコピペ
成田正雄『初等代数学』共立出版 1966
ここでは整数の公理から出発し
マイナス元の証明と定義の証明
整数のイデアルの定義の証明
そして群を公理にする前の証明などを行っており
数学が如何に不完全かを
思い知らされる構成となっている
それなので写像の定義も
全単射が前提になっていたりするし
ここでいう全射は少し形が違う
部分集合の扱いが少し違うためだ
部分集合レベルで解釈が異なるとすると
もうお手上げなので私は数学を止めた

676:132人目の素数さん
19/07/20 10:57:20.70 bSAoQnjE.net
5716
ふうL@Fu_L12345654321
学コン1傑いただきました!
とても嬉しいです!
https://pbs.twimg.com/media/D-IuUuqVUAALnAB.jpg
https://twitter.com/Fu_L12345654321/status/1144528199654633477
(deleted an unsolicited ad)

677:132人目の素数さん
19/07/20 16:24:12.09 hYyCMjNy.net
>>652
代数の教科書というと「抽象的な思考力があれば予備知識は不要」とか
序文に書きながら初心者置いてけぼりの本が多い
そんな中で成田正雄は易しい本を書いたのだが

678:132人目の素数さん
19/07/20 16:56:04.69 kOzM+Vix.net
>>654
じゃあaを整数とする
このとき
-(-a)=a
を整数の公理のみで証明できる?
もちろん整数の公理にマイナス元はないし定義もできない
あるいは除法の定理を証明してみたまえ
これが易しいとかやばい
アルキメデスの公理を整数の公理のみで証明している成田を
易しいとは何事か?

679:132人目の素数さん
19/07/20 17:03:15.32 kOzM+Vix.net
共立講座揃えているだけのゴミが俺に話しかけるなクズ

680:132人目の素数さん
19/07/20 17:05:46.26 dVIalLIA.net
とツイッターのコピペしかできない馬鹿が申しております

681:132人目の素数さん
19/07/20 17:12:46.37 kOzM+Vix.net
お前は易しいというのなら
写像の概念のみでアルキメデス性(極大元の存在)
を除法の定理の中で証明してみろ
できたらここに書け
できなきゃ易しいと言ったことを撤回しろ

682:132人目の素数さん
19/07/20 17:15:06.03 kOzM+Vix.net
言っておくが成田の写像は
全単射が前提になっているからな
まあこれがわかればなんてことない
が成田は写像の概念でアルキメデス性を証明していない
その意味はわかるか?

683:132人目の素数さん
19/07/20 17:19:20.66 kOzM+Vix.net
成田は写像すら成立しない場を考えている
これが易しいとは何事か?

684:132人目の素数さん
19/07/20 17:30:12.99 kOzM+Vix.net
それから~を定義するという日本語が濫れている中
成田の本は正しくものを定義している(定理に対して定義している)
たとえば
写像の定義なんてものはないし
全射や単射の定義なんてものもない
しかしそんな日本語で溢れている昨今
成田正雄を読まなければ数学を学んだことにならない

685:132人目の素数さん
19/07/20 17:33:18.66 kOzM+Vix.net
たとえば1940年代に出された本を観てほしい
概念の説明はあっ


686:てもそれは決して「定義」とは言っていない 何でもかんでも定義と言ってしまう現代には考えられないと思う 定義とは何か? そのレベルからわかっていないのだ それなのに成田正雄が易しいとは如何なものか



687:132人目の素数さん
19/07/20 17:34:41.66 kOzM+Vix.net
それから概念と観念をきちんと使用できる哲学が足りない
哲学なくして数学なし
プラトンは幾何学なくして哲学なしだったが
逆も言えると思う

688:132人目の素数さん
19/07/20 17:37:02.28 z31MxrpG.net
成田って誰?

689:132人目の素数さん
19/07/20 17:42:15.60 RVwP6BhT.net
>>655
(成田の本の)整数の公理って何?

690:132人目の素数さん
19/07/20 17:43:07.47 kOzM+Vix.net
>>664
代数学を専攻すると必ずぶち当たる
通称赤い本
松村英之『可換環論』を本来書く人だった
だけど急逝してしまったので松村さんが代わりに著わしたという
同じく復刊の水色の本で成田さんは『イデアル論入門』を著わしている

691:132人目の素数さん
19/07/20 17:45:26.11 GBiu2kvy.net
必死チェッカーをかけたら頭のおかしい人だった

692:132人目の素数さん
19/07/20 17:45:37.23 kOzM+Vix.net
>>665
・加法群
・乗法結合法則
・乗法単位元
・分配法則(片側のみ)

693:132人目の素数さん
19/07/20 17:48:36.70 kOzM+Vix.net
>>667
具象を述べよ

694:132人目の素数さん
19/07/20 17:51:48.60 kOzM+Vix.net
>>665
加法群にマイナス元の根拠があるけど
-(-a)=a
という定理に対して
加法逆元は定義されていない
という意味です

695:132人目の素数さん
19/07/20 17:57:14.40 RVwP6BhT.net
>>668
つまり環の公理か。
しかし、それだけで整数は決定できないと思うけど。

696:132人目の素数さん
19/07/20 18:00:08.51 RVwP6BhT.net
>>670
"-a"の加法逆元 が定義されていないってこと?

697:132人目の素数さん
19/07/20 18:00:36.16 kOzM+Vix.net
>>671
だれが整数の公理のみで整数を決定すると言ったのか?
整数の公理のみで様々な整数の性質を証明していく
というのが読み取れなきゃ数学を止めた方がよい

698:132人目の素数さん
19/07/20 18:01:18.68 kOzM+Vix.net
>>672
そうだよ

699:132人目の素数さん
19/07/20 18:04:41.49 RVwP6BhT.net
>>671
だから、それは環の公理だから、
それのみで導き出せるのは、環の性質だけだよ?

700:132人目の素数さん
19/07/20 18:07:12.59 RVwP6BhT.net
ああ、そうか、
自然数にその逆元を追加して整数を構成した、ということだな。
だとすると、整数の公理とやらは、公理ではなくて定理だな。

701:132人目の素数さん
19/07/20 18:07:17.37 kOzM+Vix.net
>>675
整数の公理
整数の定理
整数の命題
⇒整数の性質
何の話がしたいの?

702:132人目の素数さん
19/07/20 18:09:15.95 kOzM+Vix.net
>>676
なあ?
群の公理
環の公理
というように使っている以上
整数の公理は何の問題もないと思うのだが
その辺くわしく説明してくれないか?
自分だけ納得していて訳がわからん

703:132人目の素数さん
19/07/20 18:11:39.83 kOzM+Vix.net
逆元を追加したのではなく
公理から導出された定理(公準)として証明している

704:132人目の素数さん
19/07/20 18:13:04.61 kOzM+Vix.net
というのはおいといて
-(-a)=a
は演習問題になっている
つまり証明ではなく実質的にこれも公理と看做してよい

705:132人目の素数さん
19/07/20 18:14:21.71 kOzM+Vix.net
俺は整数の公理のみで
-(-a)=a
の証明は不能だと言っている
それなのでこれも公理と呼べるだろうが
そんなのは数学ではない
それだから数学は止めた

706:132人目の素数さん
19/07/20 18:14:53.47 z31MxrpG.net
>>666
なるほどわかったサンクス

707:132人目の素数さん
19/07/20 18:15:04.18 kOzM+Vix.net
もちろん
-(-a)=a
の証明は全単射が仮定されている写像で示すことができるが
それは数学ではない

708:132人目の素数さん
19/07/20 18:21:35.42 RVwP6BhT.net
>>678
もちろん、整数の公理という概念に何の問題もない。
しかし、>668で述べられている事は環の公理でしかない。
(しかも、乗法の可換性も設定されていない)
つまり、整数を与えるのに十分ではないだろう?
実際、加法群には、すべての元に逆元が存在するけど、
>670ではそうではない、と言っているよね。
>670を正当化するなら、>676になるけど、それも否定しているし。
要するに、話がはっきりしない。

709:132人目の素数さん
19/07/20 18:22:33.25 RVwP6BhT.net
>>681
ああ、そういうことか。わかった。そのとおりだ。
別の本を読め!

710:132人目の素数さん
19/07/20 18:26:49.63 kOzM+Vix.net
>>684
悪いねもう数学止めて10年くらい経つからうろ覚えでさ
加法可換
乗法可換
を忘れていた
それと
-(-a)=a
を証明するのにマイナス元は定義されていない
加法逆元の存在では証明できない

711:132人目の素数さん
19/07/20 18:32:46.06 kOzM+Vix.net
>-(-a)=a
>を証明するのにマイナス元は定義されていない
これ日本語が間違っている
この定理が示されて初めて整数上
マイナス元の存在が担保され
整数上マイナス元を定義できる

712:132人目の素数さん
19/07/20 19:54:48.40 bUtSJwVq.net
解いてみよう位相空間 (単行本)
大田 春外 (著)
673円

713:132人目の素数さん
19/07/20 19:55:51.12 RVwP6BhT.net
>>686-687
加法群(加群)という時は可換性は込み。
だから、追加するのは乗法可換だけで良い。
マイナス元と加法逆元の違いが分らん。
ここにテキトーなことを書く前に、
その本を読み返した方がいいだろうね。
君の書いていることを真に受けると、
その本はとてつもないゴミのように見えるが、
流石にそれはないだろう。
君がいろいろと勘違いしているのだろう。

714:132人目の素数さん
19/07/20 20:07:17.44 kOzM+Vix.net
>>689
それは群の公理に慣れているせいで
整数の公理には可換が必要
その理由は本に書いてある

715:132人目の素数さん
19/07/20 20:08:21.25 kOzM+Vix.net
>>689
本を読むのは君だよ
君がこの省略された話を勝手に勘違いしている
本を読むのは君だ

716:132人目の素数さん
19/07/20 20:09:45.55 kOzM+Vix.net
初めから省略した話をしているのに
そこが足りないとかまじ勘弁
しかもそれが俺の無理解からくるというこじつけ
いつでも自分の方が上でいないと気が済まない典型

717:132人目の素数さん
19/07/20 20:12:07.93 kOzM+Vix.net
んで
成田は容易だっていうやつの
-(-a)=aの証明はまだ?
アルキメデスの公理も頼むわ

718:132人目の素数さん
19/07/20 20:14:13.65 kOzM+Vix.net
まじで加法群に文句言ってるやつはこれを読んでほしい
加法群がアーベル群と同義だなんて言えなくなるから

719:132人目の素数さん
19/07/20 20:22:14.91 melExeCT.net
なんだこのキチガイ

720:132人目の素数さん
19/07/20 20:45:52.39 9+3czQ/5.net
松坂君には理屈が通じるけど、この人は永遠に通じそうもないね

721:132人目の素数さん
19/07/20 20:52:26.55 kOzM+Vix.net
まっ成田を既知外呼ばわりしているようじゃ
代数学のだも語れないわな
じゃあな無駄だよ

722:132人目の素数さん
19/07/20 21:04:42.83 ld6LpsJ1.net
おまえらって、暇なニートなんか?
そんな時間あるならリーマン予想に取り組めや?

723:132人目の素数さん
19/07/20 21:06:07.71 ld6LpsJ1.net
おまえらなぜ働かないんだ?
将来とか、どうすんだよ?
数学を語ってる場合じゃねーだろうがよ

724:132人目の素数さん
19/07/20 21:13:37.27 ixWiuyhi.net
〇〇の定義を証明、という文面からちょっと前からたまに見かけるアホアホ理科大夜間臭しかしない
~~は偽の命題を仮定してるとかなんとか

725:132人目の素数さん
19/07/20 21:15:18.80 FTCaFnT8.net
>>696
アホやろ

726:132人目の素数さん
19/07/20 21:17:37.36 kOzM+Vix.net
>>700
定義を証明するって普通だぞ(対応する定理がない場合)
理科大夜間は合ってる
大学院は北大で朝倉研究室な

727:132人目の素数さん
19/07/20 21:26:45.83 +S4O/bxz.net
少ない公理から基礎的な数学的構造を定義してそれを拡張する形で新しい数学的構造を順次構成していく。
が正しい日本語としての表現だろ。

728:132人目の素数さん
19/07/20 21:29:34.27 +S4O/bxz.net
俺ですら小学生の時点で基本的な論理演算と最小ガロア体ともブール真偽値とも看做�


729:ケるビットでこうせいされたメモリレジスタから順次四則演算定義実装していくマシン語の本ぐらい読んでる。



730:132人目の素数さん
19/07/20 21:44:20.26 RVwP6BhT.net
>>697
まあ、代数学の初歩でつまづいたのなら(>681)、
その本は君にとってはいい本ではなかった、
ということだけどな。

731:132人目の素数さん
19/07/20 22:10:04.19 FTCaFnT8.net
>>704
アホやろ

732:132人目の素数さん
19/07/20 22:22:30.23 +S4O/bxz.net
>>706
フリップフロップ回路からすべての基本的な論理素子が構成できることも小学生の時点で一通り知っとったわ。

733:132人目の素数さん
19/07/20 22:25:20.51 FTCaFnT8.net
>>707
みじめな見得

734:132人目の素数さん
19/07/20 22:31:18.79 +S4O/bxz.net
おっ
二十一世紀の現代人の癖して
昔のニューマスで育った世代やアマチュア無線やマイコンパソコン弄りで比較的低レベルハードウェア寄り階層の理屈に詳しいロートルよりも上擦った抽象論圏論等が受け入れられない
アタマ悪い受験算数厨房か?。

735:132人目の素数さん
19/07/20 22:38:32.95 ixWiuyhi.net
>>702
何らかの存在が保証される対象Xについて定義するときはもちろんちゃんと存在することを示す必要があるけど、そのことを「(Xの)定義を証明する」なんて言い方は普通しないね
群を定義した後で具体例(例えば加法群Z)が群になることを示すのに「群の定義を証明する」なんて言い方はしないし、(適当な圏で)各種の極限対象が存在することを示すのに「極限の定義を証明する」なんて言い方はしない
もしかしたら他に代わりとなる定義を紹介してその同値性を示すときは「定義を証明する」と言えるかも知れない
はて「定義を証明する」とは一体どういうことを指してるの?

736:132人目の素数さん
19/07/20 22:56:38.40 1yPc4paB.net
>>655
>-(-a)=a
>を整数の公理のみで証明できる?
新字体の藤原松三郎の「代数学第1巻」見たら以下のようにやっていた。
整数aの反数a'を
a + a' = 0
で定義して、a'がただ一つであることを証明している。
その上で、「-」の記号を、-a=a' で定義している。
で藤原の証明では、上の式がaとa'で対称であることと「-」の定義から、
-a' = a すなわち、-(-a) = a
を導いている。

737:132人目の素数さん
19/07/21 00:20:45.90 dEcRuPc6.net
せっかく数学書読むんなら、自分が知らなかった数学的事実を理解できた体験を書いたほうがよくね?
理解できないなら些細な書き方にケチつけるくらいしかできないのは仕方ないけどさ

738:132人目の素数さん
19/07/21 00:47:35.04 oE81wjyW.net
図書館で借りたりするけどこれは良書だと思ったものはやっぱり手元に置いておきたいので結局買ってしまう

739:132人目の素数さん
19/07/21 01:46:02.73 YDiCjkA5.net
>>712
結局は松坂君やID:kOzM+Vixみたいになっちゃうんだろうね
読んでわかった人は満足して匿名の5chに書き込まない
理解した俺すげーはTwitter民になるw

740:132人目の素数さん
19/07/21 09:17:25.88 glDzelF9.net
>>681
それはお前が数学を理解出来ないだけだ。

741:132人目の素数さん
19/07/21 09:25:02.01 irLMB9Uz.net
>整数aの反数a'を
>a + a' = 0
>で定義して
これは数学ではない
論より証拠
ID:glDzelF9 は整数の公理のみで上記の証明と
アルキメデスの公理の証明をここでしてみてくれ
成田は容易らしいから

742:132人目の素数さん
19/07/21 09:27:17.19 irLMB9Uz.net
a + a' = 0
即ち
a=-a'
と定義するとか何?
これは数学ではない

743:132人目の素数さん
19/07/21 09:31:56.25 irLMB9Uz.net
-(-a)=aについて
成田の写像の概念(定義ではない)を用いれば証明できるが
これも数学ではない

744:132人目の素数さん
19/07/21 09:32:58.61 irLMB9Uz.net
証明のためには
順序対ではない対という概念を使うしかないのだが
そん


745:な数学は観たことがない



746:132人目の素数さん
19/07/21 09:43:29.46 nusouKFj.net
NGID: irLMB9Uz 推奨

747:132人目の素数さん
19/07/21 10:58:18.56 9/HlQjMJ.net
そもそも主流の数学では整数は自然数から具体的に構成される対象で、
整数の公理とやらは高木貞治とか一部日本人が提唱したマイナーな概念
そういう意味では主流の数学ではないが、そこで悩んで挫折する意味はない

748:132人目の素数さん
19/07/21 11:05:54.89 Lfp1yH7e.net
リアルでもNG登録されてそう

749:132人目の素数さん
19/07/21 11:34:24.65 irLMB9Uz.net
まあ理科大の新妻先生や北大の朝倉先生について書いちゃったし
リアルでもNGだろうね
統合失調感情障害っていうのになってから
いろんなことを諦めたし
ここで特定されてもなんもないやって感じ

750:132人目の素数さん
19/07/21 11:39:56.68 mp9A+Jb+.net
やっぱりホンモノさんか

751:132人目の素数さん
19/07/21 13:46:22.64 y2RUrpcu.net
このスレって昔からチラホラ障害持ちを自供する奴湧くよな
別にお前の障害に興味ねーよ
あとスレッド上でも「こいつちょっとおかしいな」って感じることあるし

752:132人目の素数さん
19/07/21 15:42:01.01 irLMB9Uz.net
いやただNG登録を書いただけだが

753:132人目の素数さん
19/07/21 16:12:46.66 PFZ4ZSul.net
俺なんか脂質異常だぜーw

754:132人目の素数さん
19/07/21 19:04:46.57 lvncoFcX.net
公理的集合論って面白いですね。
プログラミングで言えば、一から自分でライブラリを作っていくような感じですね。

755:132人目の素数さん
19/07/21 20:36:01.39 1M3NKL24.net
公理的集合論はつまらんよ
素朴集合論のが遥かに面白いよ

756:132人目の素数さん
19/07/21 21:24:19.12 CMtCxx5v.net
位相空間論 (岩波全書 331) (単行本)
森田 紀一 (著)
1321円

757:132人目の素数さん
19/07/21 21:57:23.40 ZogC6xL4.net
価格貼る人いるけど
これ欲しい!
ってなったこと一度もない

758:132人目の素数さん
19/07/21 22:05:16.33 M95oqdwI.net
>>731
そいつがスレ主なのでw

759:132人目の素数さん
19/07/21 22:06:39.60 Pdwexk25.net
ケリー

760:132人目の素数さん
19/07/21 22:07:07.29 Pdwexk25.net
今日も元気に児玉・永見

761:132人目の素数さん
19/07/21 22:08:35.53 Pdwexk25.net
コーヒーを飲んで児玉永見「位相空間論」を読む日と一日中寝る日を交互に繰り返している

762:132人目の素数さん
19/07/21 22:15:41.39 Pdwexk25.net
70歳を過ぎてからは新しい理論を創造する能力が衰えたと感じてもっぱら数学史の書物の執筆を開始した

763:132人目の素数さん
19/07/22 00:27:53.19 UrTaBE1G.net
つくづく思う
数学書は定義・定理・特に証明のウダウダした文章を適切に改行、字下げ(インデント)するだけで読書スピードが4割は伸びる

764:132人目の素数さん
19/07/22 00:45:28.72 UrTaBE1G.net
今の数学書の証明ってプログラムのソースコードで言えば改行もインデントも何もしてないソースコードだからな

765:132人目の素数さん
19/07/22 01:46:01.65 05Wk58pq.net
証明の道筋を書く本はあれど、ビジュアライズしている本はないね。

766:132人目の素数さん
19/07/22 01:56:49.01 7XA5QJbM.net
>>737-739
ゲーデルの不完全性定理をLispで表現したチャイティンいいよね・・・。
最終的に可読性は中身があるほど下がるのは泣ける。

767:132人目の素数さん
19/07/22 08:05:06.86 QOmzBBLz.net
>>591
公理的集合論はいいですね。
松坂和夫さんの本などで以下の公理が真であることに違和感を感じていたので、少しすっきりしました。
ただ、公理にしただけですけど。
■The Axiom of Union
■The Axiom of Power Set


768:



769:132人目の素数さん
19/07/22 08:08:01.24 QOmzBBLz.net
なんか怪しげな感じがなくなるのがいいですね。

770:132人目の素数さん
19/07/22 08:48:39.33 QOmzBBLz.net
でも、全部公理に押し付けて、解決した気になるというパターンが多いですよね。

771:132人目の素数さん
19/07/22 08:49:33.30 N0STyvNA.net
>>713
買った本が増えると
引っ越しのときに大変だよ?
スキャンして電子化がいいよ

772:132人目の素数さん
19/07/22 08:51:19.86 QOmzBBLz.net
>>744
あちこち参照するのに不便を感じませんか?
一直線に読んでいくだけならむしろ電子ファイルのほうがいいですけど。

773:132人目の素数さん
19/07/22 09:53:09.21 C78Ix75+.net
【数学五輪】国際数学オリンピックで日本 金2、銀2、銅2

774:132人目の素数さん
19/07/22 10:15:15.86 wrL59+5y.net
>>732
スレ主たってこの84巻か最近のだけだろw
ガロアスレなら1からずっとアスペの独演会だがw

775:132人目の素数さん
19/07/22 10:31:26.48 TmHe99r/.net
数学書の電子書籍は目次と索引だけじゃなくて、本文中にハイパーリンクをちゃんと貼ってほしい。
Chp.9. 5.15 により云々... とか Chp.23 の途中で 書かれてもな...
そういうの一瞬で飛べるようになるのが電子書籍の強みなのに。
欲をいえば辞書ツールみたいに概要がポップアップされるのが理想、ページ遷移で飛ぶのは一瞬思考が途切れてしまうので。

776:132人目の素数さん
19/07/22 11:15:06.14 7siL90Kq.net
>>747
ゴミと比較しても

777:132人目の素数さん
19/07/22 11:25:17.72 swciwxe0.net
たまに自演が入るのはなぜ?

778:132人目の素数さん
19/07/22 12:23:44.40 QOmzBBLz.net
新井敏康著『数学基礎論』を読んでいます。
∀u(u ∈ x ⇔ u ∈ y) ⇒ x = y
と書いてあります。
「=」とは何を意味する記号なのかの説明が要りますよね。
なぜ、以下のように書かないのでしょうか?
x = y :⇔ ∀u(u ∈ x ⇔ u ∈ y)

779:132人目の素数さん
19/07/22 12:36:21.52 qrWgZQQT.net
>784
確かにそうですね。
私は、
「科学図書館」
というサイトを運営して、著作権の切れたものをPDF化して
アップしていますが、参照の場合、該当頁に飛べるようにできるか
どうか考えてみます。
貴重な指摘ありがとうございます。

780:132人目の素数さん
19/07/22 12:44:30.22 QOmzBBLz.net
新井さんの本ってどこがいいんですか?
なんか分厚い本ですが、いい加減ですね。
Introduction to Set Theory, Revised and Expanded (Chapman & Hall/CRC Pure and Applied Mathematics)
by Karel Hrbacek and Thomas Jech
が一番分かりやすいです。

781:132人目の素数さん
19/07/22 12:50:47.61 z49Iksdq.net
関係なさげ

782:132人目の素数さん
19/07/22 13:18:20.58 TmHe99r/.net
>>752
サイトトップのヘッダ画像が壊れてるので下にスクロールする前に帰ろうかと思いました...

783:132人目の素数さん
19/07/22 13:39:14.61 VC4TEKaY.net
>>751
何ページの記述ですか?
集合論の話のように見えるのですが、その話の前に記号論理学についての記述があるはずで、その中に等号の取り扱いについて書いてあると思います。

784:132人目の素数さん
19/07/22 13:42:05.17 QOmzBBLz.net
>>756
p.1です。

785:132人目の素数さん
19/07/22 13:46:59.49 VC4TEKaY.net
>>757
ということは∈や⇔についても説明してないのですね?
なら読み進めていけば説明があると思います。

786:132人目の素数さん
19/07/22 14:44:49.30 lkaEWNAO.net
す。
でNGするとはかどるな


787:



788:132人目の素数さん
19/07/22 14:47:28.42 sBT2YhLz.net
これでいいじゃん
[NGID:VC4TEKaY]
[NGID:QOmzBBLz]

789:132人目の素数さん
19/07/22 18:03:32.82 QOmzBBLz.net
dom R := {x | there exists y such that x R y}.
Prove that dom R exists for any relation R.

790:132人目の素数さん
19/07/22 18:08:31.44 QOmzBBLz.net
Definition:
A set R is a binary relation if all elements of R are ordered pairs, i. e., if for any
z ∈ R there exist x and y such that z = (x, y).

791:132人目の素数さん
19/07/22 18:11:23.09 QOmzBBLz.net
集合 R が2項関係である。 :⇔ R のすべての要素が順序対である。

この定義において、 R の第1座標、第2座標がどんな集合の要素なのかが書いてありません。
なぜでしょうか?

792:132人目の素数さん
19/07/22 18:13:53.86 R7PKBjsm.net
f(z) = (a*z + b) / (c*z + d) --- (3.1)
1次分数変換(3.1)で、 c ≠ 0 の場合、複素平面上の原点を通らない円は円に写ることを示せ。
などと書かれています。
おかしいですよね。
「z = -d/c を通らない円は円に写る」だったら分かりますが。
f(z) = (a*z + b) / (c*z + d) --- (3.1)
1次分数変換(3.1)で、 c ≠ 0 の場合、複素平面上の原点を通らない円は円に写ることを示せ。
などと書かれています。
おかしいですよね。
「z = -d/c を通らない円は円に写る」だったら分かりますが。
f(z) = (a*z + b) / (c*z + d) --- (3.1)
1次分数変換(3.1)で、 c ≠ 0 の場合、複素平面上の原点を通らない円は円に写ることを示せ。
原点を通らない直線の像は何か?
などと書かれています。
おかしいですよね。
「z = -d/c を通らない円は円に写る」だったら分かりますが。
「z = -d/c を通らない直線の像は何か?」だったら分かりますが。

(c*z + d) --- (3.1)
1次分数変換(3.1)で、 c ≠ 0 の場合、複素平面上の原点を通らない円は円に写ることを示せ。
原点を通らない直線の像は何か?
などと書かれています。
おかしいですよね。
「z = -d/c を通らない円は円に写る」だったら分かりますが。
「z = -d/c を通らない直線の像は何か?」だったら分かりますが

793:132人目の素数さん
19/07/22 18:17:37.21 R7PKBjsm.net
a, b] がコンパクトであることの Spivak さんと Buck さんの証明ですが、
議論が雑すぎます。
雑なところをなくした完全な証明を書くことができました。
数学関係の著者には、田村一郎、田村二郎、田村三郎っていう人たちがいますよね。
ところで、
Calculus と Analysis って微分積分と解析学のことだと思います。
日本だと解析学というタイトルの本のほうが難しい本が多いくらいの違いだと思いますが、
海外では、 Calculus か Analysis かで全然思い浮かべる内容が違うようですね。
大田春外という人がいます。
専門が集合論的トポロジーだそうです。
これって、 general topology っていうやつですか?
専門が線形代数学と書いているようなものですか?
杉浦光夫著『解析入門I』ですが、以下の記述があります:

以下では指数函数の実数直線上の性質を調べよう。
実数列の極限が(C = R^2 内で)存在すれば、極限は実数であることが定理I.4.5,1)からわかる。

これはわざわざ書くべきことでしょうか?
点列 a_n ∈ {x ∈ R^2 | x2 = 0} について、
lim a_n が存在すれば、 lim a_n ∈ {x ∈ R^2 | x2 = 0} である
ということですよね。

794:132人目の素数さん
19/07/22 18:18:48.32 QOmzBBLz.net
Let R be a binary relation; let A = ∪(∪R).
Prove that (x, y) ∈ R implies x ∈ A and y ∈ A.
Conclude from this that dom R and ran R exist.

795:132人目の素数さん
19/07/22 18:26:15.90 QOmzBBLz.net
そういえば、順序対の定義でも、第1座標、第2座標がどんな集合の要素なのかが書いてありません:
Definition: (a, b) := {{a}, {a, b}}.

796:132人目の素数さん
19/07/22 18:29:25.79 wdHos+2W.net
代数幾何学って、何であんなにクソ難しいの?

797:132人目の素数さん
19/07/22 20:40:56.07 ntkdwBwz.net
>>721
八ゲ同
すごく基本的な概念や定義に悩んでいると
時間がもったいないと思います。
少年老いやすく学なりがたしです

798:132人目の素数さん
19/07/22 22:00:56.29 p0qTMqiz.net
フェルマーの最終定理の証明を目的とした和書でオススメありますか?
斎藤毅「フェルマー予想」は斜め読みした感じノイキルヒが読めれば読めそうな感じでしたが、難しいと話題なのでそうも行かないのでしょう

799:132人目の素数さん
19/07/22 22:34:15.36 qrWgZQQT.net
>755
URLリンク(www.cam.hi-ho.ne.jp)


800:science/sciencelib.html は、FirefoxでもOperaでも正常に表示できますが。 トップには、ヒエログリフをバックに白抜きで「科学図書館」という文字が書いてあります。



801:132人目の素数さん
19/07/22 23:02:39.27 wrL59+5y.net
Googleで最初にヒットするのが↓だからでしょう
URLリンク(www.cam.hi-ho.ne.jp)

802:132人目の素数さん
19/07/22 23:13:30.86 oZGpWkvH.net
イタチだ

803:132人目の素数さん
19/07/22 23:23:20.42 swciwxe0.net
森田紀一の位相空間論は確かに良書

804:132人目の素数さん
19/07/22 23:43:52.70 aJeWbKQy.net
>>752
PDFを扱うのであれば是非とも以下を採用して頂きたいです
・PDFビュワー(例えばAcrobat)ファイル→プロパティ から「文書のプロパティ」を開く
表示は 「ページパネルとページ」。しおりがあるなら「しおりパネルとページ」
ページレイアウトは「単一ページ」
倍率は「全体表示」
・PDF上のページ番号と実際の中身のページ番号を一致させる
・ファイル名は「著者名」「書籍名」を記載 「出版年」も。

805:132人目の素数さん
19/07/23 02:03:54.37 27B8L7hC.net
>>748
ぐりぐりするとその箇所の行間が出現するやつとか夢想

806:132人目の素数さん
19/07/23 09:53:50.03 U70YwrcN.net
>775
提案ありがとうございます。

とりあえず、PDFの頁番号と本文の頁番号を一致させる方向で作業を進めてみます。
PDFの頁番号と、本文の頁番号が違うのは、従来の印刷された書籍の場合
前づけ(扉、目次、まえがきなど、本文以外の部分)を別頁立てにして
ノンブル(頁番号)の表記も変えるということが、広く行われていた
ために、その様式をとりいれていたためですが、PDFで見る場合には、頁番号が
一致したほうが便利ですから、そのようにしようとおもいます。
栞をつけるかどうか、索引をつけた場合、その索引項目のページをクリックすると、
本文の該当個所に飛ぶようにするかどうか、も今後の課題として検討してみます。

807:132人目の素数さん
19/07/23 12:24:10.21 fGRQ+PF7.net
>>770
しつこいよ
大学で訊け
数学科の友人ぐらいいるだろ

808:132人目の素数さん
19/07/23 12:30:53.30 8/7rSCyp.net
代数幾何学って本によって定義が違うのが難しさを助長してるよな

809:132人目の素数さん
19/07/23 14:56:15.22 zFX0CtSv.net
森田 位相空間論 値上げ

810:132人目の素数さん
19/07/23 19:58:14.20 iQJtTT5d.net
いくらでも値上げしていいよ
どうせスキャンするから

811:132人目の素数さん
19/07/23 20:54:10.03 ywXBUwWY.net
ゴミカキコばっかし

812:132人目の素数さん
19/07/23 22:49:29.71 zFX0CtSv.net
昨夜 2冊も450円まで値下げしてたのに

813:132人目の素数さん
19/07/24 01:21:21.57 PBUZ3rMJ.net
森田の位相空間は送料込みで700円切ったら100%買うわ

814:132人目の素数さん
19/07/24 01:41:12.26 Y+SEu8PW.net
外国書籍のPDFって勝手にダウンロードしてもいいものなの?

815:132人目の素数さん
19/07/24 02:14:48.82 IbobqMan.net
いい
俺が許す
(by 数学の神)

816:132人目の素数さん
19/07/24 03:31:20.25 Tcz05JKN.net
700円って何基準?

817:132人目の素数さん
19/07/24 11:22:00.26 uOzBiMoN.net
足立恒雄著『数』を読んでいます。

推論規則
(場合分け証明法)
命題の列の中に、 A ∨ B, C および C がこの順序で現れ(間隔をおいてでもよい)、前の C には A が仮定として先行しており、
後の C には B が仮定として先行しているならば、 A と B は仮定から取り除


818:いてもよい。 」 「C には A が仮定として先行しており」とはどういう意味ですか? 「仮定」とは何かがこの本では説明されていません。



819:132人目の素数さん
19/07/24 11:23:32.96 uOzBiMoN.net
A ∨ B, A, C, B, C

A ∨ B, C, C
としてよいということですか?
意味不明です。

820:132人目の素数さん
19/07/24 11:24:12.75 uOzBiMoN.net
足立さんは態度がでかく偉そうですが、その著作のクオリティは低いですよね。

821:132人目の素数さん
19/07/24 11:28:24.58 uOzBiMoN.net
場合分けということですが、
A が成り立つ場合と B が成り立つ場合ということだと推測します。

822:132人目の素数さん
19/07/24 11:38:26.93 2f0aMzXf.net
よくもまあ何年も入門書で躓き続けられるよこの人は

823:132人目の素数さん
19/07/24 11:43:43.04 PBUZ3rMJ.net
広汎性発達障害ゴミクズアスペは死ね

824:132人目の素数さん
19/07/24 11:52:42.31 uOzBiMoN.net
足立さんの本ですが、その先のほうも読んでみましたが、説明に不備がありすぎます。
ですので、読むのを止めました。
やはり、海外の評価の高い本は素晴らしいですね。

825:132人目の素数さん
19/07/24 12:47:39.53 9PyWtj0C.net
>>792
馬鹿アスペの発達障害

826:132人目の素数さん
19/07/24 18:05:17.47 nT4vWSa7.net
その本ですが、著者が偉そうなくせに、間違いがある本ですよね。
杉浦光夫著『解析入門I』を読んでいます。
Σ_{n = 0}^{∞} {(-1)^n / (2*n)!} * z^(2*n)
と書いたとき、これは、
S_m := Σ_{n = 0}^{m} {(-1)^n / (2*n)!} * z^(2*n)
lim S_m を表わすのでしょうか?
それとも、整級数である
Σ_{n = 0}^{∞} a_n * z^n
a_n = 0 for n ∈ {1, 3, 5, …}
a_n = (-1)^(n/2) / n! for n ∈ {0, 2, 4, …}
を表わすのでしょうか?
まあ、どちらの意味にとっても同じことですが、
杉浦さんは混同しているようです。
以下の辺りを読むと混同していることが分かります。

次の二つの整級数は絶対収束する:
Σ_{n = 0}^{∞} {(-1)^n / (2*n)!} * z^(2*n),


杉浦光夫さんは、オイラーの公式を導くのに、
「(詳しく言えば定理2.3、命題I.5.3,2)を用いた)」と書いています。
ということは杉浦さんの頭の中は以下のようになっていたことになります:

e^(i*z) = cos(z) + i*sin(z)
e^(i*z)
=
1 + i/1! * z + i^2/2! * z^2 + i^3/3! * z^3 + i^4/4! * z^4 + i^5/5! * z^5 + i^6/6! * z^6 + i^7/7! * z^7 + …
=
1 + i/1! * z + -1/2! * z^2 + -i/3! * z^3 + 1/4! * z^4 + i/5! * z^5 + -1/6! * z^6 + -i/7! * z^7 + …
= (定理2.3)
(1 + 0 * z + -1/2! * z^2 + 0 * z^3 + 1/4! * z^4 + 0 * z^5 + -1/6! * z^6 + 0 * z^7 + …)
+

827:132人目の素数さん
19/07/24 18:55:08.87 BtW8Xbq1.net
数オリって、どれくらい難しいの?

828:132人目の素数さん
19/07/24 20:52:24.99 92COAwQO.net
偉そうwww

829:132人目の素数さん
19/07/24 22:20:34.80 KXlu7sfk.net
その辺のオッサン/オバサンより、ずっと「偉い」よねえ...

830:132人目の素数さん
19/07/24 22:22:21.88 lYFjYLSH.net
NG ID:uOzBiMoN
NG ID:nT4vWSa7

831:132人目の素数さん
19/07/24 22:33:18.84 csLj0iaM.net
>>792
おまけにいちゃもんのクオリティも下がっているときた

832:132人目の素数さん
19/07/25 15:58:33.88 WorWEe2X.net
多変数解析関数論 (第2版) ─学部生へおくる岡の連接定理─ 野口潤次郎 著 2019年08月25日
URLリンク(www.asakura.co.jp)
改訂のポイント: 
(1)下記の主要な三つの定理の証明を大幅に簡略化.学部生レベルの読者でもより理解しやすく改訂.
・岡の第1 連接定理の証明 (


833:定理2.5.1). ・H. カルタンの行列分解補題の証明 (補題4.2.5:初版では補題4.2.2). ・L. シュヴァルツの有限次元性定理の証明 (定理7.3.19:初版では定理7.3.17) (2)その他,代数の初等的な部分や微分形式の導入部分,例など追加・補筆. (3)演習問題を整理・追加して章末に演習問題のパートを新設.



834:132人目の素数さん
19/07/25 16:07:49.55 S+Q8pGoD.net
>>802
コホモロジーは?

835:132人目の素数さん
19/07/25 17:00:04.42 XUIab6i1.net
数学者写真集 MATHEMATICIANS  2019/7
マリアナ・クック (著), 冨永 星
史上最年少で数学オリンピックの金メダルを獲得したテレンス・タオ、映画『ビューティフル・マインド』の
モデルにもなったノーベル経済学賞受賞者ジョン・ナッシュ、女性初のフィールズ賞受賞者マリアム・ミルザハニ、
「フェルマーの最終定理」を証明したアンドリュー・ワイルズ……。数学界のノーベル賞とも言われる「フィールズ賞」の
受賞者24名を含む、世界最高峰の92名の数学者たち。彼らの内なる世界に、写真家マリアナ・クックの美しいポートレイトと
インタビューで迫る。彼らがどのような幼少期を送り、いかにして数学に目覚めたのか。どのようなときに喜びを感じるのか。
そして、友人や師との奇跡のようなめぐり合わせ……。無味乾燥で、人を寄せ付けないようにも見える数学の世界。
けれど、彼らの口から語られる言葉に耳を澄まし、その静謐なまなざしと対峙したときに浮かび上がるのは、数学もまた、
人間の営みであるということ。数学することは、生きることだ。

836:132人目の素数さん
19/07/25 17:00:13.57 XUIab6i1.net
●本書で取り上げる主な数学者たち(五十音順)
マイケル・アティヤ アンドレイ・オクンコフ
ロビオン・カービー
ニコラス・カッツ
ロバート・ガニング
アンリ・カルタン
レオナルト・カルレソン
ウィリアム・ガワーズ
ミハイル・グロモフ
イズライル・ゲルファント
ジョン・コンウェイ
アラン・コンヌ
ウィリアム・サーストン
ドン・ザギエ
デニス・サリヴァン
ピーター・サルナック
ヤコフ・シナイ
ジェームズ・シモンズ
ヴォーン・ジョーンズ
イサドール・シンガー
スティーヴン・スメイル
ジャン=ピエール・セール
マーカス・デュ・ソートイ
テレンス・タオ
ジョン・テイト
サイモン・ドナルドソン
イングリッド・ドブシー
ピエール・ドリーニュ
ジョン・ナッシュ
ルイス・ニーレンバーグ
フリードリッヒ・ヒルツェブルフ
広中平祐
広中えり子
ゲルト・ファルティングス
マイケル・フリードマン
ロジャー・ペンローズ
ポール・マリアヴァン
ブノワ・マンデルブロ
デヴィッド・マンフォード
マリアム・ミルザハニ
ジョン・ミルナー
シン=トゥン・ヤウ
ピーター・ラックス
ロバート・ラングランズ
アンドリュー・ワイルズ

837:132人目の素数さん
19/07/25 21:47:14.46 QQjf41V4.net
そろそろ本気出すぞ
フィールズ賞もらう予定

838:132人目の素数さん
19/07/25 22:01:29.40 JMOd8WKE.net
それは予定ではなく、妄想という。

839:132人目の素数さん
19/07/25 22:35:15.34 C8mZDxxi.net
森田 位相空間論 値上げ

840:132人目の素数さん
19/07/26 00:18:23.82 z0LV8hKZ.net
>>804
『謎を解く人々』みたいなやつ?

841:132人目の素数さん
19/07/26 00:19:27.75 LffaMG9g.net
今までバカな人間どもに遠慮してやってただけだ
だがあまにバカが多いので
俺が本気出すしかないと思った
おまえらバカなんだからすっこんでろ!

842:132人目の素数さん
19/07/26 00:28:46.46 qwHm+CXI.net
> 今までバカな人間どもに遠慮してやってただけだ
魔王のセリフかよ

843:132人目の素数さん
19/07/26 01:27:39.28 SoFLu41S.net
俺は魔王ではない!
ただの馬鹿だ

844:132人目の素数さん
19/07/26 01:28:33.36 SoFLu41S.net
新しい数学を作るぞ!
もうアイデアは完成している!

845:132人目の素数さん
19/07/26 13:16:04.37 9yvuy91q.net
知ったかぶり?????
ひとさまがなんちゃら言うたのを「知ったか」するのが知ったかぶり。
湯水のように沸いてくる知識を披瀝するのは、ひとさまからすると、「嫌みなヤシ」か
「イケすかんヤツ」か、むかつく~!くらいちゃうのけ?
博覧強記だつっとるだろ?

846:132人目の素数さん
19/07/26 22:50:28.37 ZH8FvlZZ.net
森田 位相空間論 値…グハァ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

847:132人目の素数さん
19/07/26 22:54:34.27 lnnEplfk.net
時空の大域的構造 単行本 ? 2019/7/18
Stephen W. Hawking (原著), George F.R. Ellis (原著),
De La Cruz Yancarlos Josue,Custodio (原著),
スティーヴン・W. ホーキング (著),
ジョージ・F.R. エリス (著),
富岡 竜太 (翻訳), & 2 その他
↑これってどうですかね?
予想ですが、翻訳がダメダメなんでしょうね。

848:132人目の素数さん
19/07/26 22:57:17.37 lnnEplfk.net
古典力学 単行本 ? 2019/6/11
ジョン・テイラー (原著), 上田 晴彦 (翻訳)
↑この本も翻訳されていたんですね。

849:132人目の素数さん
19/07/26 23:56:16.13 OQwHc/kd.net
>>816-817
イタチ

850:132人目の素数さん
19/07/27 08:39:38.41 JdmZnKz4.net
ホーキングはアインシュタインよりも凄いよな

851:132人目の素数さん
19/07/27 14:23:54.68 29zK8scU.net
>>816
>予想ですが、翻訳がダメダメなんでしょうね
ダメなお前にちょうどいい
買って売上に貢献しろ

852:132人目の素数さん
19/07/27 15:03:02.90 l2JopudC.net
>>816
こういう発言を見ていると、このひとは本当にクズだなあと思う

853:132人目の素数さん
19/07/27 16:36:29.13 wPJUm+Qg.net
>>819
ホーキングの業績ってなにがあるの?
どこがすごいの?

854:132人目の素数さん
19/07/27 21:35:43.63 QRPzqGg2.net
物理板にカエレ

855:132人目の素数さん
19/07/27 21:58:47.22 h0cIKkXd.net
ホーキングはブラックホールを解明してフィールズ賞取ったよな

856:132人目の素数さん
19/07/28 02:45:34.01 9U65x6Fe.net
なるほど
この板のバカ住人たちとは
別次元の天才なわけですね!

857:132人目の素数さん
19/07/28 19:20:51.20 P/Wrku6j.net
リーマン面 (単行本)
H.ワイル (著), 田村 二郎 (翻訳)
1290円

858:132人目の素数さん
19/07/28 19:35:47.51 5YgCdWin.net
>>826
コテつけて

859:132人目の素数さん
19/07/28 23:13:51.09 gwusdSyW.net
アホーキングってオカリーで糖質教員やってんの?

860:132人目の素数さん
19/07/29 11:07:51.47 6hgyADsN.net
>>827
お前何年もほんと進歩ないな

861:132人目の素数さん
19/07/29 13:05:18.30 r+RLcqWp.net
いつも糞スレで活躍されているようで

862:132人目の素数さん
19/07/29 17:26:12.87 LPd6xMsL.net
吉田洋一著『微分積分学』を読んでいます。
なぜ、いまさらこんな本を出版するのかさっぱり分かりません。
イプシロンデルタ論法を途中まで使っていないのも不自然ですね。
何がいいのかさっぱり分かりません。

863:132人目の素数さん
19/07/29 17:39:15.65 T18fllNC.net
>>831 それ指定教科書だた 中途半端な本だと思た 教員にとっては教科書として 使いやすい中途半端さなのかもしれない 馬鹿な教員用ねw



865:132人目の素数さん
19/07/29 18:10:45.44 FZ79TaHJ.net
(命題I.5.3,2))
(1 + -1/2! * z^2 + 1/4! * z^4 + -1/6! * z^6 + …
i*(1/1! * z + -1/3! * z^3 + 1/5! * z^5 + -1/7! * z^7 + …)

cos(z) + i*sin(z)
つまり、ここでの杉浦さんは、
Σ_{n = 0}^{∞} {(-1)^n / (2*n)!} * z^(2*n)
と書いたとき、これを
S_m := Σ_{n = 0}^{m} {(-1)^n / (2*n)!} * z^(2*n)
lim S_m を表わすものと考えています。
一方、杉浦さんは、 cos(z), sin(z) の定義の辺りでは、

次の二つの整級数は絶対収束する:
Σ_{n = 0}^{∞} {(-1)^n / (2*n)!} * z^(2*n),


と書いています。ここでは、杉浦さんは、
Σ_{n = 0}^{∞} {(-1)^n / (2*n)!} * z^(2*n)
と書いたとき、
整級数である
Σ_{n = 0}^{∞} a_n * z^n
a_n = 0 for n ∈ {1, 3, 5, …}
a_n = (-1)^(n/2) / n! for n ∈ {0, 2, 4, …}
を表わすものと考えています。
杉浦光夫さんは、明らかに、混同しています。
杉浦光夫著『解析入門I』を読んでいます。
初等関数のところですが、最初は杉浦さんも丁寧に書いていますが、
段々、記述が雑になっていきますね。
やるからにはちゃんと丁寧に書いてほしかったですよね。
段々手に負えなくなっていって丁寧な記述が破綻してしまった
という印象です。
杉浦光夫さんは丁寧な記述に特色がありますが、なんというかちょっと素人くさいですよね。
Rudin なんかは余裕が感じられますが、杉浦さんはすぐに息切れしてしまう印象です。

866:132人目の素数さん
19/07/29 18:16:07.72 4JGDSqW/.net
ID:LPd6xMsL
ID:FZ79TaHJ
今日は松坂くん1号と2号がいるのか?

867:132人目の素数さん
19/07/29 23:27:10.21 wldgVx9H.net
独特の胡散臭い文体はあらかじめ全部NGにしているんで気づかない

868:132人目の素数さん
19/07/30 11:31:57.96 1aIEgccZ.net
Terence Tao著『Analysis I』を読んでいます。
フィールズ賞受賞者の本とは思えないほど、くどいですね。
Taoさんは本当に天才なのでしょうか?

869:132人目の素数さん
19/07/30 12:20:55.51 iwW54e3a.net
よっ
評論家

870:132人目の素数さん
19/07/30 13:05:10.72 SR/8GYZc.net
>>830
やっぱり進歩ないな

871:132人目の素数さん
19/07/30 14:25:50.44 1aIEgccZ.net
Taoさんは単なるプロブレムソルバーなのでしょうか?

872:132人目の素数さん
19/07/30 14:52:26.07 lijBsVGo.net
杉浦光夫著『解析入門I』を読んでいます。
誤りを発見しました↓
p.189
誤:
ある点 c で K における最小値に達する
正:
ある点 c で K における最小値 m に達する
杉浦光夫著『解析入門I』を読んでいます。
p.193 定理4.1
K を R または C とする。 K の二つの開集合 A, B に対し、 f が A から B への全単写で、
f, f^(-1) が共に連続とする。もし f が一点 x ∈ A で微分可能で f'(x) ≠ 0 であるならば、
f^(-1) は y = f(x) で微分可能で
(4.1) (f^(-1))'(y) = 1/f'(x) 125
が成立つ。
この定理の仮定ですが、無駄が多すぎませんか?
以下で十分ではないでしょうか?
K を R または C とする。 K の二つの開集合 A, B に対し、 f を A から B への全単写
とする。もし f が一点 x ∈ A で微分可能で f'(x) ≠ 0 であり、 f^(-1) が一点 y = f(x) ∈ B で
連続であるならば、 f^(-1) は y = f(x) で微分可能で
(4.1) (f^(-1))'(y) = 1/f'(x)
が成立つ。
杉浦光夫さんはこういう風に、ときおり粗雑になりますよね。
残念です。
そして、気持ちが悪いですよね。

873:132人目の素数さん
19/07/30 15:27:01.30 iwW54e3a.net
お前がな

874:132人目の素数さん
19/07/30 16:09:59.48 yxfKvUmc.net
馬鹿アスペの真似るカス

875:132人目の素数さん
19/07/30 19:59:19.42 1aIEgccZ.net
Taoさんって線形計画法の論文とかも書いているんですね。

876:132人目の素数さん
19/07/30 20:46:54.44 QeaJFmwY.net
馬鹿アスペの真似でデビューおめでとう

877:132人目の素数さん
19/07/30 22:08:36.95 sSewyBDu.net
何で和書よりも洋書のが易しい本が多いの?
和書、ムズすぎ

878:132人目の素数さん
19/07/31 05:37:19.64 Q2EaKfuB.net
>>845
行間を省くことに美学を感じてる頭のおかしい美的感覚が蔓延してるから

879:132人目の素数さん
19/07/31 07:03:50.25 wHBfMJaO.net
和書はあかんよな
洋書のが分かりやすい
英語できないといけないが、数学書のは平易だしね

880:132人目の素数さん
19/07/31 13:48:37.00 H7ubIeVT.net
厚い教科書イヤがって排除したのはおまえら不勉強な連�


881:�なのにな。 自分で首を絞めてる。



882:132人目の素数さん
19/07/31 18:54:27.43 wHBfMJaO.net
なんで?
ワイは猛勉強して東大理3に合格したよ

883:132人目の素数さん
19/07/31 19:19:06.91 Q2EaKfuB.net
いや、でも初めての分野をサクッと一通り学ぶ時って、自分のモチベーションのためにも薄めのテキストはアリと言えばアリ
通読したという達成感が次に繋がるからな
でも今となっては数学については初めてでもぎっしり詰まった大著の方が全然いいけど

884:132人目の素数さん
19/07/31 19:33:22.10 wHBfMJaO.net
おまえら理3をどう思っているの?

885:132人目の素数さん
19/07/31 19:37:25.62 tp+/mSRf.net
洋書でもクズ本は沢山あります
よく選びましょう

886:132人目の素数さん
19/07/31 19:40:12.83 jHZld2kF.net
NG推奨
ID:wHBfMJaO [3/3]

887:132人目の素数さん
19/07/31 19:40:32.42 tp+/mSRf.net
普通に勉強してれば
理3ぐらい合格するでしょ?
猛勉強して合格ってのは
基本的な能力が低いってことだから
馬鹿だと自認すべし

888:132人目の素数さん
19/07/31 19:49:44.01 jHZld2kF.net
まあなんていうか代数学の本を読めば
公理なしに整数において約数と倍数は存在しないし
もちろん最大公約数なんて求めることができない
そういうことがわかる「教科書」は最近のものにない

889:132人目の素数さん
19/07/31 20:29:20.22 wHBfMJaO.net
和書のがダメダメだろ
洋書は良書が圧倒的に多い
東大英語も満点近くだったし、英語は得意だ
洋書の数学書もスラスラ読める

890:132人目の素数さん
19/07/31 20:36:10.23 A41ZQFUQ.net
日本語の掲示板にいる時点で・・・

891:132人目の素数さん
19/07/31 20:54:26.87 NfycrUb0.net
コバショーの微積や曲面・曲線なんかは薄いなりによう出来とる

892:132人目の素数さん
19/07/31 20:56:50.37 qsB8vlWW.net
コバショー、数学板もここまできたか

893:132人目の素数さん
19/07/31 21:01:56.93 jHZld2kF.net
同シリーズの
内田伏一の位相入門は最低だけどな
任意性の概念を履き違えている
最低の連続性の定義だった

894:132人目の素数さん
19/07/31 21:03:05.34 jHZld2kF.net
同シリーズというか
裳華房で本の柄が同じのやつね

895:132人目の素数さん
19/07/31 21:11:24.36 seFwIpGq.net
>ID:wHBfMJaO
お前みたいなのは無視した方がいいんだろうけど一度だけ聞いてみる
東大理3に合格した証拠に手書きの「ID:wHBfMJaO」を含めて写真撮ってアップできる?

896:132人目の素数さん
19/07/31 21:47:51.97 BAZRCv+2.net
グーグル先生、フォトショ先生の過労が心配されます

897:132人目の素数さん
19/07/31 21:51:08.44 Tfohd+Nr.net
>>856
いい洋書を紹介してクレメンス

898:132人目の素数さん
19/08/01 00:05:49.83 Z1NvVrMu.net
>>864
Michael Spivak Calculus
Walter Rudin Principles of Mathematical Analysis
Sheldon Axler Linear Algebra Done Right
Jamse Munkres Topology


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch