現代数学の系譜 工学物理雑談 古典ガロア理論も読む67at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む67 - 暇つぶし2ch85:132人目の素数さん
19/06/07 20:00:44.77 sb86lnBh.net
私たちのやろうとすることは
Qのコーシー列の集合を同値関係で類別して
Rを構成するやりかたに似ている.
但しもっときびしい同値関係を使う.
実数列の集合 R^Nを考える.
s = (s1,s2,s3 ,・・・),s'=(s'1, s'2, s'3,・・・ )∈R^N
は,ある番号から先のしっぽが一致する
∃n0:n >= n0 → sn= s'n
とき同値s ~ s'と定義しよう
(いわばコーシーのべったり版).
念のため推移律をチェックすると,
sとs'が1962番目から先一致し,
s'とs"が2015番目から先一致するなら,
sとs"は2015番目から先一致する.
~は R^N を類別するが,各類から代表を選び,代表系を袋に蓄えておく.
幾何的には商射影 R^N→ R^N/~の切断を選んだことになる.
任意の実数列s に対し,袋をごそごそさぐってそいつと同値な
(同じファイパーの)代表r= r(s)をちょうど一つ取り出せる訳だ.
sとrとがそこから先ずっと一致する番号をsの決定番号と呼び,d = d(s)と記す.
つまりsd,sd+1,sd+2,・・・を知ればsの類の代表r は決められる.
更に,何らかの事情によりdが知らされていなくても,
あるD>=d についてsD+1, sD+2,sD+3,・・・
が知らされたとするならば,それだけの情報で
既に r = r(s)は取り出せ, したがってd= d(s)も決まり,
結局sd が決められることに注意しよう.


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch