暇つぶし2chat MATH
- 暇つぶし2ch383:現代数学の系譜 雑談 古典ガロア理論も読む
19/06/09 08:09:43.29 nOfbA8rJ.net
>>358
つづき
リーマンは何をしたのか
コーシーによる定義を, ”任意の関数" のために精密化した.
自分の定義の有効範囲をきちんと論じている.
ディリクレの不連続関数が積分不可能なのは承知のうえ.
リーマンの条件が理解されない!!
リーマンの条件は, 現代の言葉では, すべてのσ > 0 について, Sσ
が, (次に述べる意味で) ジョルダン測度ゼロとなること, と言い換えられる.
カントール集合とハルナック集合
リーマン積分可能性は位相的な条件ではない!
足りなかったのは測度の理論だった
ジョルダン測度の理論は, リーマン積分の理論の整理と(とくに多変
数への) 拡張のために, ジョルダンの解析学の講義において論じられた.
ボレルの測度の理論
要請①~③の繰り返しにより可測集合の範囲を一歩一歩広げていき,
それぞれの可測集合に測度を割当てようとした(→ 超限再帰的定
義) その結果, 「可測集合」の全体は, すべての区間を含む最小の
σ-加法的集合族に一致する.
現代の用語では,
「可測集合」→ ボレル集合
「測度」→ ボレル集合のルベーグ測度
ということになる.
つづく


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch