暇つぶし2chat MATH
- 暇つぶし2ch381:無限級数の項別積分ができねばならない. その保証がないばかりか, そもそも”任意の関数の積分" が何を意味するのかも, 当時は明らかでなかった. コーシーの定積分は連続関数に対してはうまく機能したが, フーリエ級数を扱うために必要とされた”任意の関数" を相手にするには(概念がガバガバで) 十分ではない. 現代的な「対応」としての関数概念が全面的に採用されるのは, ディリクレ(J.P.G.Lejeune Dirichlet) 以後のこと. ディリクレの関数概念 変数y が変数x に関連づけられていて, x の数値が与えられるたび に, それに対するy の値がただひととおりに決まる仕組みがあるな ら, y は独立変数x の関数である, と言われる. この関数概念にもとづいて, ディリクレは初めて, ”任意の関数" が どんな条件を満たせばフーリエ級数であらわされるか, という問題 についての(部分的な) 解答を得た. (『任意の関数を表示する三角級数の収束について』1829 年) つづく
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch