高校数学の質問スレPart400at MATH
高校数学の質問スレPart400 - 暇つぶし2ch344:132人目の素数さん
19/07/02 21:57:21.75 zVvGSAio.net
高校生です。教えてください。区分求積法で
lim[n→∞]1/nΣ[k=1..n]f(k/n)=
lim[n→∞]1/nΣ[k=10万..n+10億]f(k/n)=
∮[0→1]f(x)dx
と、当たり前の性質(?)の話です。
これは、それぞれ、ゼロから10万/nが空白に、また、n/nから10億/nが余分になってしまい、一見成り立ちそうにはありません。
ですが、nを極限に飛ばすと、不十分な方の面積も、余分な方の面積も0に圧縮され、結局は∮[0→1]f(x)dxとみなせる、という解釈で説明できます(あってますよね???)。
ここで、僕の高校では数研出版の教科書を扱っているのですが、これには(というかその他多くの参考書で)以下のような説明が掲載されています。
1/nからn/nまでの面積を考える際に、一番左端の長方形として、底面0から1/n高さf(1/n)の長方形を取り、そこからどんどん長方形をとる、というような説明を掲載していました。
しかし、これは同じ面積を考えるにあたって、一番左端の長方形として、底面1/nから2/n高さf(2/n)を取ってもいいはずです。0から1/nという隙間ができますが、結局これも極限で解決できます。
つまり何が言いたいのかというと、この教科書の教え方では、僕が最初に示した、Σの範囲にはどんな定数を足したりしても、結局∮[0から1]f(x)とみなせるという性質が見えにくくなる気がするのです。
生徒たちは、「隙間がある場合はどうなるのだろう」「それぞれ考えて足し合わさねばならないのかな」と、要らぬ思考を働かせてしまう気がします。
このことについて、ご意見お聞かせください。
駄文ご容赦ください。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch