19/06/12 23:55:00.88 BGDu9uzp.net
置換積分を授業で習ったときに浮かんだ疑問です。
t=f(x)と置換し、両辺をxで微分すると
dt/dx=f'(x) となり、
dt=f'(x)dx が得られ、これを与えられた被積分関数にどう利用できるか、というふうに積分を進めて行きます、というのが教科書にも書いてあり、授業でも教わった解法です。
何が疑問かというと、dt/dx=f'(x) からdt=f'(x)dx を得るときに、決して、両辺にdxをかけるという操作が行われていないということです。
例えばdxを微小変化であるΔxと捉えれば、それはかけることは出来るのでしょうが、ここではdx、すなわち四則演算をしてはならない記号です。
実際にどの参考書を見ても、「dxを両辺にかけると」などという文言は載っておらず、「置き換えられるので~」のような曖昧な表現をしていました。
どういう理屈で、このdt=f'(x)dx という式が得られるのでしょうか。また、記号dx単体では何を意味するのでしょうか。