19/06/05 11:33:30.50 KicqCc8A.net
つづき
・同じ年の末頃に Jacobi が論文を発表して(これもラテン語なんで分からん (>_<))Abel はびっくり。自分一人のオリジナルな発想かと思っていた「楕円積分の逆関数」を使っている!こうして 1829 年まで Abel と Jacobi の競争が始まった。例えばレムニスケートの等分問題が Abel によって解決されたのもこの時期。
が、この実り豊かな時期も 1829 年に Abel が26歳の若さで亡くなるまで。Abel は本当に unlucky な人で、五次方程式の論文は無視されるは、Cauchy に論文をなくされるは…。
・前回 Marshall 氏は Gauss の楕円関数論への貢献について少し話していたけれど、今日私はまだ一言も Gauss と言っていない。実は Gauss は論文を発表せず、自分だけで研究していた。Abel や Jacobi に先立つこと三十年前から始めていて、レムニスケートの等分や算術幾何平均との関係、果ては百年後まで誰も理解出来なかった不思議な図を描いている。
実はこれは SL(2,Z) の合同部分群 Γ(2) の基本領域で、Gauss が modular 関数の理論を知っていたことの証拠とされる。
Gauss は論文発表しなくても平気。Authority ですからね。貧乏な Abel は職探ししなくちゃいけないから、とてもそんな悠長な事は言ってられなかった。
・さて、その後は 19 世紀前半には Liouville, Hermite, Eisenstein など、19 世紀後半には Riemann, Weierstrass などが現れ、発達した複素関数論によって、というよりも複素関数論を研究させながら楕円関数論を発展させる。多分、楕円関数を調べることが複素関数論を研究する動機になっていた?
そして、彼らによって楕円関数論はほぼ完成して今では教科書(例えば Ahlfors)の一章に過ぎなくなってしまった。でも今の代数幾何の根っこはこの辺にあるんですよ。
つづく