19/05/30 17:28:31.06 StJl0vsq.net
>>272 補足
1)有限nで考えて、n→∞の極限:
この場合は、>>252と>>258に書きました
2)順序数ωを導入して、自然数NをN+ωに拡大する:
(つまり、1,2,・・・,n,・・・,ω の箱の数列を考える)
この場合は、>>79に一言書きました(詳しくは>>78ご参照)
3)で”挟みうち”ですが、要するに、
有限 1,2,・・・,nの同値類 と (n→∞の極限も可)
超限 1,2,・・・,n,・・・,ω の同値類 と
この二つを理解すれば
時枝 1,2,・・・,n,・・・ の同値類は理解できる
4)上記2)について、>>87で面白い指摘(批判)がありました
(”たとえば2列に分ける方法の1つはmod 2で要は偶数と奇数に分ける”など(細かくは>>87ご参照))
5)まあ、以下のように考えれば良いでしょう
・mod 2なら、最初から数列を二つ組みで増やして行けばいい
1,2, 3,4, ・・・,2n-1,2n,・・・,ω,ω+1 などと
・こうすれば、
奇数列:1,3,・・・,2n-1,・・・,ω
偶数列:2,4, ・・・,2n,・・・,ω+1
とできます
・もし、任意のk列に並べるなら、k個ずつ1組で増やしていけばいい
最後だけ ω,ω+1・・・ω+k-1 にすればいい
これで、任意のk列の並べに対応できます
・蛇足ですが、k個ずつ→k!個ずつ(ここにk!はkの累乗)1組で増やしていけば、k以下の全ての列数の並べ替えに対応可
・そして、反例は一つでいい。上記は1例ですが、時枝に対する反例としては、これで十分ですね(^^
(参考)
URLリンク(mgtohakari.hatenablog.com)
尊みで飯が食える
2016-10-26
順序数と基数の話
(抜粋)
0=Φ,1={0},2={0,1},...,n,n+1=n∪{n},... は順序数である。これらを有限順序数、あるいは自然数という。
自然数全体の集合ω={0,1,2,...}は順序数である。
ω+1=ω∪{ω},ω+2,ω+3,...ω+ω,ω+ω+ω,...ω^ω,ω^ω^ω,...ωω,ωωω,...,ω1,...
はすべて順序数 。
有限順序数はすべて基数
ωは基数だがω+1は基数でない。
(引用終わり)