19/05/30 11:28:32.95 StJl0vsq.net
>>267 補足
檜山正幸さん、「僕は、伝統的なイプシロン-デルタ論法そのものには懐疑的です*1」に追記を含めて、賛成ですね(^^;
位相空間の開集合よる定義とか、フィルターの収束とか、これらを総合的に学ぶべしと
URLリンク(m-hiyama.hatenablog.com)
檜山正幸のキマイラ飼育記 (はてなBlog)
2017-07-18
イプシロン-デルタ論法はなぜ難しいのか? どうしたら分かるのか? 分かる必要があるのか?
(抜粋)
僕は、伝統的なイプシロン-デルタ論法そのものには懐疑的です*1。ゴタゴタした不等式をいじり回すのは早々に切り上げて、開集合を導入したほうがいいと思います。そんな思いから、出来るだけ不等式を使わずに集合族に注目するスタイルでイプシロン-デルタ論法を紹介します。
*1:[追記]「懐疑的」とは、イプシロン-デルタ論法を学ぶことは「それほど重要じゃない」と思ってる、ってことです。正の数ε, δに関する命題が重要なのではなくて、距離空間において、一点の近傍での関数の挙動を云々してるという意識を持てればいいだろう、と。
内容:
1.イプシロン-デルタ論法
2.時間や運動のイメージを捨て去る
3.ユークリッド距離と開球体
4.扱う関数達と実例
5.平面から平面への写像
6.一点の周辺を記述する開球体の族
7.写像による開球体の像
8.デュエルゲームとしての連続性
9.�