19/05/29 08:02:00.39 n2hnO3sG.net
>>154 補足
>選択公理では、選択関数の使い方について、特に明示的な制約はありませんね。
多数の「選択公理と等価な命題」がありますよね
多数の「選択公理と等価な表現」と言い換えてもよい
選択公理の前提「空集合を要素に持たない任意の集合族に対して」
あるいは
選択関数の前提「空でない集合の空でない任意の族 A に対して」
に対して
ツォルンの補題の前提「順序集合において、任意の全順序部分集合が有界ならば」
が、代数学の極大イデアルの存在を示すときなどには、好都合な表現だと
そう理解することができると思います
つまりは、選択関数の使い方ではなく
前提の「空でない集合の空でない任意の族 A に対して」が
ツォルンの補題の前提より、使いにくい場合が、代数学などでは多々あるということだろうと
あと、「選択関数が存在する? だからどうした?」
というのもあると思います
「選択関数が存在する」から、何を示せると言いたいのか?
そこが言えないと、なんの主張にもならないよと
代表元d1,d2の大小の確率については
「選択関数が存在する」からと言って
それだけでは、確率計算はできませんよね(^^
(d1,d2について測度を与える(定義する)とかが必要ですね、普通)