19/04/26 14:03:24.36 mF7ZEDvm.net
>>21
つづき
なお、これ過去スレに書いたけど
スレ59 スレリンク(math板:840番)
840 返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/02/03(日) 14:47:03.11 ID:BnDtX2yP [9/79]
纏めると
1)大学数学科で3年、4年で確率論と確率過程論を学べば、
それは時枝記事と不一致で、時枝不成立はすぐ分る
2)だが、さらに進んで、当たらないのになぜ当たるように見えるのかが問題になる
3)一つは、すでに述べたが、同値類である元と代表とを比較して、
なにか確たることが言えるが如くの標準外のトンデモ論法を使っているところだと
(例えば >>683-684 ご参照)
4)もう一つが、可算無限長の数列のしっぽの同値類にある
しっぽの箱を開けると、どの同値類に属するかが分る。
だが、それが分る全てだ。
どの同値類に属するかが分っても、箱の中の数で分るものが増えるわけでなないよと
(細かい議論は、上記>>838などをご参照)
5)なお、非可測でビタリ集合に言及しているが、後述Hart氏PDFのGame2では選択公理を使わないから、ビタリ集合お呼びじゃない。
また、(引用)”独立な確率変数の無限族 X1,X2,X3,… 確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義される”
ここで、
「任意の有限部分族が独立←→独立な確率変数の無限族 X1,X2,X3,…」と同値関係にある
なので、
「勝つ戦略なんかある筈ない,と感じた私たちの直観は,無意識に(1)に根ざしていた,といえる.
ふしぎな戦略は,確率変数の無限族の独立性の微妙さをものがたる, といってもよい.」
は、完全に外れ
(端的に言えば、時枝先生は数学セミナー誌で5chみたいなフェイク記事を書いちゃったみたい。確率過程論に無知だったかも知れないね。)
で、最近、時枝の可算無限個の数列のシッポの同値類と、函数の芽の同値類(茎、層の関連)との対応で
これで、「時枝がなぜ当たるように見えるのか(実際は当たらないのに)」が説明できそうだということ
細かい話は、スレ62 スレリンク(math板:22番)-30ご参照
つづく