現代数学の系譜 工学物理雑談 古典ガロア理論も読む64at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む64 - 暇つぶし2ch230:132人目の素数さん
19/04/28 23:31:12.65 3tKsu9Pw.net
>>207
おそらく、ポイントの一つは、まさに「選択公理」と「同値類」だと考えている。
もうひとつは、一見自明に見える確率計算の件。
これについては、以下の問題に置き換えて考えている。
<問題0>
5つの自然数の集合{a1,a2,a3,a4,a5}から、最大値以外を選ぶ確率P0は?
<問題1>
自然数を5つ無作為に選んで、a1,a2,a3,a4,a5とする。
任意に選んだ
 a ∈{a1,...,a5}
が、残りの4つの値の最大値以下である確率P1はいくらか?
<問題2>
自然数を5つ無作為に選んで、a1,a2,a3,a4,a5とする。
N=max{a1,a2,a3,a4}とすると、
a5がN以下である確率P2はいくらか?
<問題3>
自然数を4つ無作為に選んで、a1,a2,a3,a4とする。
N=max{a1,a2,a3,a4}とする。
さらに、自然数を一つ無作為に選び、a5とする。
a5がN以下である確率P3はいくらか?
<問題3+>
自然数を一つ無作為に選んで箱の中に入れてもらいます。
さて、その数が10以下である確率はどのくらいでしょうか。
<問題3F>
自然数を4つ無作為に選んで、a1,a2,a3,a4とする。
N=max{a1,a2,a3,a4}とする。
さらに、自然数をM以下から無作為に一つ選び、a5とする。
a5がN以下である確率P3fはいくらか?


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch