19/04/22 18:11:42.59 jO4dRJrF.net
>>300あと別に適応できないものがあっても、公理的集合論が間違ってるとかいうわけではないですからね
●と○が区別できる場合
ケース1 「●○ 」
ケース2 「 ●○」
ケース3 「● ○」
ケース4 「○ ●」
上記の○を●にかえて
2個の区別のできな●●にしてみる
ケース1 「●● 」
ケース2 「 ●●」
ケース3 「● ●」
ケース4 「● ●」
ケース3は「● ●」
ケース4は「● ●」
「● ●」と「● ●」は区別がつかない
公理的集合論の外延性の公理により
{x 、 x}={x}なので
{「● ●」 、「● ●」}={「● ●」}
となりケース3=ケース4で同一なので1個のケースになった
上記の話をまとめると
2個の●と●が同一なので
2個の「● ●」と「● ●」は1個の「● ●」になった
●の場合は同一な2個の●が存在し
「● ●」の場合は同一ら1個になっている
これは
{x 、x}={x}が真の命題となり かつ
{x 、x}={x}が偽の命題になっている