19/04/21 21:55:35.96 mF1nMenr.net
>>820
ID:OyfBb3BAさん、どうも。スレ主です。
>サンクス:)
>この件について議論が進んだようで何より。
そうだね
こちらこそありがとう
特に、下記大事だね
>>714
(引用開始)
自然数を4つ無作為に選んで、a1,a2,a3,a4とする。
N=max{a1,a2,a3,a4}とする。
さらに、自然数を一つ無作為に選び、a5とする。
a5がN以下である確率はいくらか?
(引用終り)
ここ大事だよね。要するに、可算無限の自然数集合Nから、n1,n2を選んだときに、どちらが大きいか?
n1を先に選べば、0~n1は有限集合であり、n1超えの自然数の集合は可算無限だから、確率P(n1<n2)は1になるよね(^^
>>>762
>なるほど、時枝さんの見解はそういう事だったのね。
時枝さんの見解なるものは、無意味だと思うよ
そもそも、時枝さん自身がなにを考えていたのかも不明だし
書いていることも、怪しいことを書いているので、無価値だ
例えば
スレ47 スレリンク(math板:22番)
(引用開始)
確率の中心的対象は,独立な確率変数の無限族
X1,X2,X3,…である.
無限を扱うには,
(1)無限を直接扱う,
(2)有限の極限として間接に扱う,
二つの方針が可能である.
確率変数の無限族は,任意の有限部分族が独立のとき,独立,と定義されるから,(2)の扱いだ.
しかし,素朴に,無限族を直接扱えないのか?
扱えるとすると私たちの戦略は頓挫してしまう.
(引用終り)
確率論の独立は、下記のように二つの確率の積 ”P(A ∩ B)=