現代数学の系譜 工学物理雑談 古典ガロア理論も読む63at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む63 - 暇つぶし2ch627:現代数学の系譜 雑談 古典ガロア理論も読む
19/04/16 10:40:22.74 WM/U/f3d.net
>>526 付記
(引用開始)
(whose existence cannot be proved in ZFC) led to some uninformed speculation that etale cohomology and its applications (such as the proof of Fermat's last theorem) needed axioms beyond ZFC.
In practice etale cohomology is used mainly for constructible sheaves over schemes of finite type over the integers, and this needs no deep axioms of set theory: with a little care it can be constructed in this case without using any uncountable sets, and this can easily be done in ZFC (and even in much weaker theories).
(引用終り)
蛇足だけど
”Grothendieck originally developed etale cohomology in an extremely general setting, working with concepts such as Grothendieck toposes and Grothendieck universes.
In practice etale cohomology is used mainly for constructible sheaves over schemes of finite type over the integers, and this needs no deep axioms of set theory: with a little care it can be constructed in this case without using any uncountable sets, and this can easily be done in ZFC (and even in much weaker theories).
Etale cohomology quickly found other applications, for example Deligne and Lusztig used it to construct representations of finite groups of Lie type; see Deligne?Lusztig theory.”
ってことで、Grothendieck 先生は、ZFC超えの「Grothendieck toposes and Grothendieck universes」を構想していたんだ
だが、Deligne先生はつまみ食いしたんだ。ZFC内で、簡単に済ました
そこらの確執が、たしか、Grothendieckの伝記みたいなのに書いてあったね(^^


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch