現代数学の系譜 工学物理雑談 古典ガロア理論も読む63at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む63 - 暇つぶし2ch575:現代数学の系譜 雑談 古典ガロア理論も読む
19/04/15 07:28:44.91 GY+CIXbC.net
>>520
つづき
0 はじめに
本稿は,第 17 回整数論サマースクール「? 進ガロア表現とガロア変形の整数論」
における講演「エタールコホモロジーと ? 進表現」の内容をまとめたものである.エ
タールコホモロジーとは,一般の体上の代数多様体に対して機能するコホモロジー
理論であり,もともと Grothendieck によって Weil 予想の解決を目的として発明さ
れたものである.その理論は,Grothendieck および彼の弟子たちによっていわゆ
る SGA (S´eminaire de G´eom´etrie Alg´ebrique du Bois-Marie) において徹底的に展
開された後,[Del2], [Del3] において元来の目標を達成するに至った(Grothendieck
の描いていた方針とは異なっていたようであるが).それとともに,Weil 予想から
Ramanujan 予想を導いた Deligne の仕事 [Del1] を一つの契機として,エタールコ
ホモロジーは整数論にとっても重要な位置を占め始めた.Deligne は,モジュラー
曲線上の普遍楕円曲線のファイバー積から作られる高次元代数多様体(久賀・佐藤
多様体)のエタールコホモロジーを用いて,(重さの大きい)楕円モジュラー形式
から 2 次元 ? 進表現を構成した.そして,代数多様体から作られる ? 進表現が Weil
予想より来る性質を満たすことから,楕円モジュラー形式の q 展開の係数の絶対値
の評価を導いたのである.(もちろん,Eichler や志村五郎氏らによる先駆的な研究
がこの仕事の土台となっていることは言うまでもない.)
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch