19/04/14 23:13:04.94 C5If4iEo.net
>>511 追加
定理1.正規な射影的代数多様体の問の射f:X→Yで全射になっているものを考える。Xは森夢空間であると仮定する。このとき以下が成り立つ:
(1)Yも森夢空間である。
(2)埋め込み写像f*:Pic(Y)R→Pic(X)RによってXのファンをPic(Y)Rに制限すると、Yのファンになる。
さらに論文提出者大川新之介氏は、森夢空間の研究に関連してKLT log Fano多様体の特徴付けを研究した。Schwede-Smithは標数0のKLT log Fano多様体(X,B)に対して、Xは大域的にF-正則タイプになることを証明した。
ここと、代数多様体が大域的にF-正則タイプであるとは、ほとんどすべての素数pに対して、標数p還元をしたときに構造層がFrobenius写像に対して分裂するということで定義される。
大川新之介氏はSchwede-Smithの定理の逆を考え、2次元の場合にはそれが成り立っことを証明した:
定理2.正規で射影的な代数曲面Xに対して、もしもこれが大域的にF-正則タイプであるならば、X上にQ-因子Bが存在して、(X,B)がKLT log Fano多様体になる。
以上に述べたように大川新之介氏の業績は代数幾何学に重要な貢献している。よって、論文提出者大川新之介は、博士(数理科学)の学位を受けるにふさわしい充分な資格があると認める。
(引用終り)