現代数学の系譜 工学物理雑談 古典ガロア理論も読む63at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む63
- 暇つぶし2ch1075:自然数から選ぶときの確率の極限値としてなら”(続・確率パズルの迷宮 無数の中から選ぶ(岩沢宏和著)) ・なので、n有限→∞の極限なら、Hart氏のPDF(>>129より)有限(the number of boxes is finite)の場合、当てられないから、極限でも当てられない ・なお、時枝も(>>841より)”無限を扱うには,(2)有限の極限として間接に扱う”としている。この場合も、上記Hart氏の通り! ・これらは、>>945でID:+f/MVEG2さんが提起した問題の通りじゃね?(^^ (参考) http://shochandas.xsrv.jp/relax/probability3.htm 互いに素な確率 平成25年1月4日 互いに素な場合を、無限を対象に考える。すなわち、 自然数 N={1,2,3,..,n,....} からランダムに2個の数を選んだとき、それが互いに素である2数 になる確率P1はどれくらいか? (答) HN「V」さんが考察されました。(平成25年1月4日付け) 無限にある自然数からランダムに2個の数を選ぶというのは出来そうにないので、有限個 の自然数からランダムに2個の数を選ぶ場合を考え、その極限値がどうなるかを考えました。 求める確率は、 P1=Πp (1-(1/p)^2)=1/ζ(2)=6/π^2=0.607927… (Πはすべての素数にわたる) 検索したら、Webサイト「互いに素」にありました。 ( https://ja.wikipedia.org/wiki/%E4%BA%92%E3%81%84%E3%81%AB%E7%B4%A0 互いに素) HN「V」さんからのコメントです。(平成25年1月8日付け) この問題は、数学セミナー(2013年1月号) P80~ 続・確率パズルの迷宮 無数の中から選ぶ (岩沢宏和 著) に載っていますね。 「自然数からランダムに2個の数を選んだとき」というだけでは前提不足だが、n以下の自然 数から選ぶときの確率の極限値としてなら・・・・というような記述があります。 つづく
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch