現代数学の系譜 工学物理雑談 古典ガロア理論も読む63at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む63 - 暇つぶし2ch1075:自然数から選ぶときの確率の極限値としてなら”(続・確率パズルの迷宮 無数の中から選ぶ(岩沢宏和著)) ・なので、n有限→∞の極限なら、Hart氏のPDF(>>129より)有限(the number of boxes is finite)の場合、当てられないから、極限でも当てられない ・なお、時枝も(>>841より)”無限を扱うには,(2)有限の極限として間接に扱う”としている。この場合も、上記Hart氏の通り! ・これらは、>>945でID:+f/MVEG2さんが提起した問題の通りじゃね?(^^ (参考) http://shochandas.xsrv.jp/relax/probability3.htm 互いに素な確率 平成25年1月4日  互いに素な場合を、無限を対象に考える。すなわち、  自然数 N={1,2,3,..,n,....} からランダムに2個の数を選んだとき、それが互いに素である2数 になる確率P1はどれくらいか? (答)  HN「V」さんが考察されました。(平成25年1月4日付け)  無限にある自然数からランダムに2個の数を選ぶというのは出来そうにないので、有限個 の自然数からランダムに2個の数を選ぶ場合を考え、その極限値がどうなるかを考えました。 求める確率は、   P1=Πp (1-(1/p)^2)=1/ζ(2)=6/π^2=0.607927… (Πはすべての素数にわたる)  検索したら、Webサイト「互いに素」にありました。 ( https://ja.wikipedia.org/wiki/%E4%BA%92%E3%81%84%E3%81%AB%E7%B4%A0 互いに素)  HN「V」さんからのコメントです。(平成25年1月8日付け)  この問題は、数学セミナー(2013年1月号) P80~   続・確率パズルの迷宮 無数の中から選ぶ  (岩沢宏和 著) に載っていますね。 「自然数からランダムに2個の数を選んだとき」というだけでは前提不足だが、n以下の自然 数から選ぶときの確率の極限値としてなら・・・・というような記述があります。 つづく



1076:現代数学の系譜 雑談 古典ガロア理論も読む
19/04/25 18:45:11.95 naEY8mMF.net
>>974
つづき
(参考追加)
・岩沢宏和『確率パズルの迷宮』は本が出版されている
・1/ζ(2)=6/π^2 は、数理解析研究所講究録がある
URLリンク(phasetr.com)
読書リストメモ: 岩沢宏和『確率パズルの迷宮』相転移プロダクション 2014 11.22
岩沢宏和『確率パズルの迷宮』, 面白そうなので覚えておきたい.
URLリンク(www.kurims.kyoto-u.ac.jp)
数理解析研究所講究録 1240 巻 2001 年
「 2 整数が互いに素になる確率」 の確率論的見方
一数値実験による予想の検証一
杉田洋 (Hiroshi Sugita) 九大・数理学研究院 (Faculty of Mathematics, Kyushu University)
高信敏 (Satoshi Takanobu) 金沢大 ・理学部 (Faculty of Science, Kanazawa University)
(引用終わり)
以上

1077:132人目の素数さん
19/04/25 18:54:19.46 80I3vdHd.net
>>966
>>測度と確率測度は違うとか
>当然、それらは違うだろ? w(^^;
確率測度は測度ですが
確率を求めるための測度だから
当然、確率測度です
全体の測度が1になるなんてことは
誰に言われなくても瞬時に分かる
分からないのはそもそも
確率が分かってない半可通の証拠
>>967
>具体的な測度まだ?
「自然数全体を1として
 個々の自然数が均等の重みをもつ
 有限加法性測度」
というだけで
・個々の自然数の測度は0
・自然数の有限集合の測度も0
・自然数全体から有限集合を除いた
 補集合の測度は1
とこれだけわかりますが何か?

1078:132人目の素数さん
19/04/25 18:54:36.41 80I3vdHd.net
>>968
>数え上げ測度
また半可通が訳も分からず



1079:ゥ当違いなものを持ち出してきたねw Nにおける数え上げ測度は N全体の測度を1としませんよw >>970 >負の確率 ここの問題とは無関係 半可通 錯乱しまくりw >>971-972 下手なコピペ 休むに似たり



1080:132人目の素数さん
19/04/25 18:55:00.13 80I3vdHd.net
>>969
>コルモゴロフの公理を満たさないってのは
>論理的矛盾ではないということ?
コルモゴロフの公理の中に
「任意の可算無限個の事象に対し
 互いに排反な事象の和集合の値は
 各事象の値の和になる」
とあるが、有限加法的測度では
「任意の有限個の事象に対し
 互いに排反な事象の和集合の値は
 各事象の値の和になる」
までしか言えない
つまり、それぞれの事象の値が0として
それを可算無限個足し合わせた
和集合の値が0だとは、もはやいえない

1081:132人目の素数さん
19/04/25 18:57:09.93 80I3vdHd.net
>>974-975
半可通が馬鹿丸出しなこと書いてるな
半可通の貴様に質問だ
答えられるものなら答えてみろ
■質問
N^2に対して
1.全体の測度を1
2.各点の測度は均等
となる(有限加法的)測度を設定したとする
さて、以下の集合の測度は?
・{(n1,n2)|n1<n2}
・{(n1,n2)|n1>n2}

1082:現代数学の系譜 雑談 古典ガロア理論も読む
19/04/25 20:12:15.83 6wOHbeDL.net
具体的な測度まだ?
>>956-957より、
 ">>954 自明なので"、& ”>>945の有限加法的測度で考えてます”でしょっ?! (ハズキルーペ風(^^; ))
ぐだぐだ、必死の話題そらしか?w(^^
>>976
(>>966より)
>>>測度と確率測度は違うとか
>>当然、それらは違うだろ? w(^^;
>確率測度は測度ですが
当然、測度と確率測度とは、使い分けます、普通にね
特に確率論の教科書では。「確率測度は測度」と言ったら、”測度”の話しができないでしょw(^^
測度論も、ルベーグ以外にも、数え上げ測度とかディラック測度とかあるし(>>968
それで、確率について他人と議論するときには、”確率測度”は単に”確率”として略して議論するよ
「それ確率1だね」とか「確率0.1」だとかいう。このとき、”確率”=”確率測度”の意味であって、”確率測度”→”測度”とは絶対言わないw(^^
で、具体的な測度まだ?
自明なことをぐだぐだ書いてないで、しっかり落ちこぼれの実力を見せてくれw(^^

1083:132人目の素数さん
19/04/25 20:15:44.30 80I3vdHd.net
>>980
>具体的な測度まだ?
半可通 >>979の問題に答えられず惨敗
時枝記事も読めない負けイヌは死ね!!!

1084:132人目の素数さん
19/04/25 20:16:46.73 80I3vdHd.net
■負けイヌが答えられなかった質問www
N^2に対して
1.全体の測度を1
2.各点の測度は均等
となる(有限加法的)測度を設定したとする
さて、以下の集合の測度は?
・{(n1,n2)|n1<n2}
・{(n1,n2)|n1>n2}

1085:現代数学の系譜 雑談 古典ガロア理論も読む
19/04/25 20:22:21.12 6wOHbeDL.net
>>979
>■質問
その質問って、>>909の<問題2>と<問題3+>のパロディーじゃんか
それって、>>958-959で聞かれている「具体的な測度が示されてません」について、おまえが答えれば終いだろw

1086:現代数学の系譜 雑談 古典ガロア理論も読む
19/04/25 20:23:47.59 6wOHbeDL.net
ああ? おれに救いと答えの測度を求めているのか? 教えてはやらんw(^^

1087:132人目の素数さん
19/04/25 20:24:30.96 zBEdk1Ie.net
>>982
P({(n1,n2)|n1<n2})=1/2
P({(n1,n2)|n1>n2})=1/2
かな?
n2=t として
P({n1|n1<t})=1/2
P({n1|n1>t})=1/2
だから。
ところで、この有限加法的測度では
自然数全体の期待値(平均値) E(N) はどうなりますか?

1088:132人目の素数さん
19/04/25 20:50:18.06 80I3vdHd.net
>>985
>P({n1|n1<t})=1/2
>P({n1|n1>t})=1/2
tが定数なら
P({n1|n1<t})=0
P({n1|n1>t})=1
だけどね

1089:132人目の素数さん
19/04/25 20:52:59.19 80I3vdHd.net
>>985
P({(n1,n2)|n1<n2})<=1/2
P({(n1,n2)|n1>n2})<=1/2
という考え方はあるよ
つまり(n1,n2)→(n2,n1)という写像で写りあうから
これで測度が保たれるというならそうなるけどね

1090:132人目の素数さん
19/04/25 21:03:31.82 80I3vdHd.net
>自然数全体の期待値(平均値) E(N)
自然数全体の一様分布の期待値のつもりなら
そんなもん存在しませんが

1091:132人目の素数さん
19/04/25 21:21:59.81 zBEdk1Ie.net
>>987
不等式の意味は?
>>988
「一様分布」ではなくて、「この有限加法的測度」での話です。

1092:132人目の素数さん
19/04/25 21:25:37.23 80I3vdHd.net
>>989
>「一様分布」ではなくて、「この有限加法的測度」での話…
間違ってる
測度に期待値はない 分布には期待値がある

1093:132人目の素数さん
19/04/25 21:35:23.64 zBEdk1Ie.net
>>990
あなたの確率論「有限加法的測度」では、期待値が定義できないってこと?

1094:132人目の素数さん
19/04/25 21:53:57.8


1095:0 ID:80I3vdHd.net



1096:132人目の素数さん
19/04/25 22:07:12.88 zBEdk1Ie.net
>>992
つまり、この測度では各事象の確率分布が定義されないってことだね。

>987で確率測度が不等式で示されている意味は?

1097:132人目の素数さん
19/04/26 04:39:55.04 XadX71lh.net
フェラチオ

1098:132人目の素数さん
19/04/26 04:40:10.51 XadX71lh.net
フェラチオ

1099:132人目の素数さん
19/04/26 04:40:34.60 XadX71lh.net
フェラチオ

1100:132人目の素数さん
19/04/26 04:40:50.74 XadX71lh.net
フェラチオ

1101:132人目の素数さん
19/04/26 04:41:04.07 XadX71lh.net
フェラチオ

1102:132人目の素数さん
19/04/26 04:41:34.78 XadX71lh.net
フェラチオ

1103:132人目の素数さん
19/04/26 04:42:02.54 XadX71lh.net
フェラチオ

1104:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 26日 7時間 51分 19秒

1105:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch