数理論理学(数学基礎論) その14at MATH
数理論理学(数学基礎論) その14 - 暇つぶし2ch579:132人目の素数さん
21/07/24 14:11:06.36 t5qdrllK.net
Quora「不完全性定理とはなんですか?」
不完全性定理はヒルベルトの計画を破ったと言われる定理です。
ヒルベルトの時代においては述語論理は第一階述語論理、第二階述語論理と論理関数の階数建てに応じて別れていたのですが、ヒルベルトの計画としては述語論理は無矛盾であれば完全であることが示すことができると予想されていました。つまり第一階述語論理の完全性証明から初めて、第二階、第三階、‥と階数を上げて証明していき、数学的帰納法を使って第n階述語論理も完全という命題を証明して述語論理は完全という証明をしていこうという方針だったようです。
実際1929年にはゲーデルが第一階述語論理の完全性証明を提出して全部の階数の述語論理の完全性証明に第一歩が踏み出されたかと思われました。
ところが1931年に同じくゲーデルが形式体系が自然数論を含んでいると決定不可能性命題を構成できてしまうという不完全性定理を証明してしまいました。実は次に完全性を示すべき第二階述語論理は、第一階述語論理と違って、その自然数論を含んでいる形式体系だったのです。
つまり控えめなゲーデルはヒルベルトに気を使ってまわりくどく、
第二階述語論理は決定不可能性命題が作れる形式体系ですよ=第二階述語論理の完全性証明は不可能ですよ=第二階以上も当然無理=ヒルベルトの計画は破綻しましたよ
ということを不完全性定理を通して間接的に主張したのです。
ヒルベルトもそれを認めてアッケルマンとの共書の「記号論理学の基礎」の後の版で「ゲーデルは第二階述語論理が不完全であることを示した」と書いてヒルベルトの計画は打ち捨てられることになりました。結果、若い数学者のゲーデルが大数学者のヒルベルトを打ち倒すというセンセーショナルな結果をもたらした定理となりました。
つまり質問に回答すると「第二階以上の述語論理は、第一階述語論理と違って、不完全な形式体系であることを控えめに回りくどく主張した定理」です。

こんな話聞いたことない。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch