現代数学の系譜 工学物理雑談 古典ガロア理論も読む62at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 - 暇つぶし2ch602:themes/rigaku/qa-pdf/qa4.pdf 私が独自に導出した式が既に知られているか教えてください。 Q 数学科を志望している高校2年の学生です。 高校の数学授業内容とは全く関係ありませんが、個人的に EulerGamma 定数を調べています。 定義式 γ=limn→∞{Σk=1→n{1/k} - log(n)} で表される以外に無限級数を用いた表現方法等、知られていましたら教えてください。 具体的には、私が独自に導出した式  γ=Σn=1→∞{Σk=2→∞{(-1)k*(1/(knk))}} という式が既に知られているかどうかを教えてください。 A ご質問にあった公式は、たとえば http://mathworld.wolfram.com/Euler-MascheroniConstant.html の(14)式にあります。 ちなみに、この「MathWorld」のサイトはオンライン数学辞典として便利なものです。 EulerGamma 定数に収束する級数は数値計算に便利なものがありません。 最近の本には、あまり説明されていないようです。ご質問にあった公式を改良した公式として Cn= 1+ 1/2 + ... + 1/n - log(n+1/2) について γ = Cn -2 Σp:n+1→∞Σk:1→∞1/(2k+1)*1/(2p)2k+1 という公式が数値計算に使われていたようです。この公式を導くヒントを示しておきます: γ= Cn - (Cn - Cn+1) - (Cn+1 - Cn+2) -... また、EulerGamma 定数の積分表示式が、「数学公式III」(岩波全書)13ページにいくつか紹介されています。 被積分函数を適当に級数展開することにより、さまざまな形の級数表示を得ることができるでしょう。 ガンマ函数の入門書として、現在発売されている本:  ・「ガンマ関数入門」(日本評論社)  ・E.アルティン/著、上野健爾/訳・解説 数値解析に詳しい本(入手困難と思います):  ・「ガンマ函数の理論と応用」柴垣和三雄, 岩波書店(1952)




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch