現代数学の系譜 工学物理雑談 古典ガロア理論も読む62at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 - 暇つぶし2ch200:現代数学の系譜 雑談 古典ガロア理論も読む
19/03/10 22:54:23.80 rk/29Zdt.net
>>170
(追加参考)
URLリンク(repository.lib.tottori-u.ac.jp)
URLリンク(repository.lib.tottori-u.ac.jp)
第二階論理によるペアノ算術 田畑 博敏 鳥取大学教育地域科学部 2002
(抜粋)
はじめに
よく知られているように,ペアノは自然数に関する公理系を作ることにより,その公理から算術の真理を定理として導こうとした。
その公理の中に数学的帰納法の原理が含まれている。
第一階の論理によるこの原理の定式化は,いわゆる公理図式によるもので,具体的な一階の(自由変項を含む)論理式を代入することにより無数の公理が得られる。
それゆえ数学的帰納法の公理は無数の論理式に対応する無数の公理を含むことになる。
しかし,論理式はせいぜい可算個しかないゆえに,論理式が表す自然数の性質もせいぜい可算無限価しかない。
他方,第二階論理によって定式化される数学的帰納法の公理は単一の公理であり,それは,「すべての自然数の性質(集合)」 に言及していると解釈され,非可算個の性質(集合)を量化の範囲に含んでいる。
さらに,第一階の論理によるペアノの公理系はコンパクト性定理により標準モデルとは同型でない非標準モデルが存在するのに対して,第二階のペアノの公理系はカテゴリカルである(すなわち,すべてのモデルが同型的である)。
このような相違は,なによりも定式化の基礎にある論理の相違に由来している。
そこで,本論文の梗概はつぎのようになる。
まず第l節では第二階ペアノ算術の公理系を提示して,そのモデルのいくつかを考え,非標準的モデルにも触れる。
第2節では,第二階論理によるペアノの公理系がカテゴリカルであることを示す。
それを受けて,第3節では,公理系の意図されたモデルを,互いに同型なペアノ・モデルの代表としてとり,ここで原始回帰(primitiv erecursion)という定義図式によって定義される自然数上の演算(加法・乗法・巾法)の存在を示す。
第4節では,数学的帰納法のモデルではあるが,他のペアノの公理のモデルとはかぎらないモデルと, (意図された)自然数のモデル上の合同関係との,つながりを論じる。
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch