19/03/10 13:40:49.47 rk/29Zdt.net
>>162
まだ、下記の嘉田 勝先生の「超冪による自然数論の超準モデルの構成」の方が読める・・(^^;
URLリンク(researchmap.jp)
嘉田勝
URLリンク(researchmap.jp)
資料公開
URLリンク(researchmap.jp)
超冪による自然数論の超準モデルの構成
嘉田 勝
2013 年 1 月 16 日 / 2014 年 6 月 11 日改訂
(抜粋)
4. N の超冪は自然数論の超準モデルである
ストラクチャー N には,0N < x, 1N < x, . . . をすべて同時にみたす要素 x は存在しない.
したがって,ストラクチャー M はストラクチャー N と同型ではない.
なぜこのようなことが起こるのか? それは,「x は無限大の自然数である」という性質が言語 L
の論理式で記述できないからである.
1 階述語論理の論理式構成規則では,L の個々の定数記号 0, 1, . . . について 0 < x, 1 < x, . . . と
いう論理式は作れるが,「それらすべての AND」を意味する論理式は構成できない.
つまり,1 階述語論理では「無限大の自然数」というコンセプトを表現できないために,
ストラクチャーに「無限大の自然数」が存在したとしても,1 階述語論理の記述能力の範囲ではその存在を認識できない
(あるかないかを論理式の真偽で判定できない)のである.*4
*4 「x は無限大の自然数である」は論理式で ∀n ∈ N (n < x) と書けばよい,と思うかもしれない.
しかし,それは早計である.
1 階述語論理の論理式では “∈ N” の部分を記述する方法がないからである.
∀n (n < x) だと,(もし「無限大の自然数」が存在すれば)n の変域が「無限大の自然数」にも及ぶので,意図通りの主張の表現にはならない.