19/03/10 12:51:17.94 rk/29Zdt.net
>>139
><数学的帰納法>
>ブリタニカ:自然数全体の集合を定義したペアノの公理系の第5公理を基礎に導かれる論法である。そこでペアノの第5公理を数学的帰納法の公理と呼ぶ。
(参考)
URLリンク(ja.wikipedia.org)
ペアノの公理
(抜粋)
一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ。(レーヴェンハイム=スコーレムの定理) 二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる[1]。
ラムダ計算はペアノの公理を満たす自然数の、異なる構成法を与える。
URLリンク(ja.wikipedia.org)
(抜粋)
算術の超準モデル (英: non-standard model of arithmetic) とは、(一階)ペアノ算術のモデルのうち、通常の自然数ではない要素(超準数)を含むようなモデルのことである。
それに対し、通常の自然数 N は算術の標準モデルと呼ばれる。ペアノ算術の任意のモデルは線形順序で並んでおり、 N と同型な切片を持つ。超準モデルは、その切片の外に元を持つようなモデルであると言える。
可算超準モデルの構造
超積モデルは非可算となることが知られている。このことを見る一つの仕方は N の無限直積から超積モデルへの単射を構成すればよい。
他方でレーヴェンハイム-スコーレムの定理により、可算な算術の超準モデルが存在しなければならない。
構成法の一つとしてヘンキン構成を用いた方法がある。
URLリンク(www2.kobe-u.ac.jp)
^ 坪井明人 数学基礎論サマースクール モデル理論入門
(引用終り)
つづく