現代数学の系譜 工学物理雑談 古典ガロア理論も読む62at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む62 - 暇つぶし2ch164:現代数学の系譜 雑談 古典ガロア理論も読む
19/03/10 09:38:38.31 rk/29Zdt.net
>>139 補足
>ブリタニカ:αで番号づけるために,選択公理 (→ツェルメロの公理 ) を使って整列集合をつくらなければならないが,超限帰納法を直接使わないで,選択公理またはそれと同値な補題を使って証明することのほうが多い。
このブリタニカ説明が、ちょっと意味不明
選択公理を前提にしていると、いろんな推論で、心配がないことは言えると思うが、
「選択公理 (→ツェルメロの公理 ) を使って整列集合をつくらなければならない」とか
「超限帰納法を直接使わないで,選択公理またはそれと同値な補題を使って証明することのほうが多い」とか
これだけだと、意味わからん(^^
URLリンク(cai3.cs.shinshu-u.ac.jp)
整列可能定理
(抜粋)
以下の定理が知られています。
[ツェルメロの整列可能性定理]  任意の集合E上に整列順序が存在する。
以下に証明を述べますが,
Xが有限集合か,自然数の集合Nとの間に双射が存在するなら整列順序を入れることは 難しくありません。
Nとの間に双射が存在しなくても,順序を定義する方法の,アイデアの一つは,次のようなものです。
まず,x ∈ Eを一つ取り出し,これを定義したい順序で,最初の要素とします。 次に E \{x}から要素y ∈ Xを取り出し,これをXの次の要素とします。さらに E \ {x,y}から要素z ∈ Xを取り出し,これをyの次の要素とします。無論はEは無限集合で,しかも,Nとの間に双射が定義されず,1番目,2番目,…,と要素の選択を「数学的帰納法」で定義できないかもしれません。
そこで,任意のE部分集合Y ⊆ Xに対して,
τ(Y) ∈ E \ Y
となるような写像τを作ります。このような写像は,Eのべき集合
B(E)={Y| Y ⊆ E}
を使って造られる集合の族,
この集合が空集合でないことは,
ですので選択公理によって保証されます。
τ(Y), Y ⊆ E, Y ≠ E
の直感的な意味は,Yの全ての要素により(順序Rについて)真に大きい要素で,しかもそのような要素の中では,一番小さい要素です。
です。 [ツェルメロの定理の証明終]
[補題]
[補題の証明]
に矛盾する。 [補題の証明終]


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch