19/03/09 00:27:42.89 9Sqq12HI.net
>>98
サイコパスのウソ
何も出ないのは分ったよ
仕方ないから
下記、これ出すよw(^^;
スレ61 スレリンク(math板:987番)
987 名前:132人目の素数さん[sage] 投稿日:2019/03/08(金) 14:34:23.63 ID:nHTjj5G+
Nのモデルを
…∈ 10 ∈9 ∈8 ∈7 ∈6 ∈5 ∈4 ∈3 ∈2 ∈1 ∈0
となるように作ろう!
(引用終り)
そう、だれか書いてくれたが、これだね
渕野昌先生が、同じことを書いている
順序の定義:順序数α,βに対し, α∈βをα<βと表わし, "α∈βまたはα=β”をα≦βと表わすことにする.
順序も定義せずに、”正則”と叫ぶバカがいる
公理系の議論をしているときに、定義もなしに議論するバカ
”∈”を使って、順序”<”を定義する
これ
フォン・ノイマンが案出した巧妙なトリックなのだ(^^
(下記二つのPDFご参照。まあ、凡人には無理かも)
URLリンク(fuchino.ddo.jp)
渕野 昌,連続体仮説とゲーデルの集合論的宇宙(ユニヴァース), 現代思想,2007年2月臨時増刊号 (2007), 94-116
(抜粋)
P13
フォン・ノイマンがここで案出したもう一つの巧妙なトリックは、
このように帰納的に定義することと結果として同じになるような順序数の内的な定義を与えることであった。
具体的には、「要素が集合の帰属関係∈ で 整列されるような集合を順序数とする」
として順序数を定義する。
また2つの順序数α、β
に対し、順序関係α < β を、
α ∈ β となることで定義するのである。
この順序数の定義により、各々の順序数は、それより小さい順序数の全体となり、
それらは各順序型に関して一意に決まり、その大小関係にそって、
数学的帰納法の議論のできるようなものとなるのである。
(引用終り)
つづく