分からない問題はここに書いてね451at MATH
分からない問題はここに書いてね451 - 暇つぶし2ch981:132人目の素数さん
19/04/11 05:19:37.45 Ue9ZzVLN.net
>>928
線分[0,a] のm等分点(端も含めてm+1点)でのf(x) の相加平均
 {1/(1+m)}Σ[k=0,m] f(ka/m)
がmについて単調減少
を使ったでござるか。
小生は
 {(a-k)・f(0) + k・f(a)}/a > f(k),
 {k・f(0) + (a-k)・f(a)}/a > f(a-k),
辺々たして
 f(0) + f(2n) > f(k) + f(2n-k),
・k=1,3,・・・・,2n-1 の和の半分
 (n/2)f(0) - f(1) - f(3) - ・・・・ - f(2n-1) + (n/2)f(2n) >0,

 (n/2)Σ[k=0,n-1] {f(2k) - 2f(2k+1) + f(2k+2)}
 = n{(1/2)f(0) - f(1) + f(2) - ・・・・ + f(2n-2) - f(2n-1) + (1/2)f(2n)} >0,
を加えると
 n{f(0) + f(2) + ・・・・ + f(2n)} - (n+1){f(1) + f(3) + ・・・・ + f(2n-1)} >0,
または
・k=2,4,・・・・,2n-2 の和の半分
 {(n-1)/2}f(0) - f(2) - f(4) ・・・・ - f(2n-2) + {(n-1)/2}f(2n) >0,

 {(n+1)/2}Σ[k=0,n-1] {f(2k) - 2f(2k+1) + f(2k+2)}
 = (n+1){(1/2)f(0) - f(1) + f(2) - ・・・・ + f(2n-2) - f(2n-1) + (1/2)f(2n)} >0,
を加えると
 n{f(0) + f(2) + ・・・・ + f(2n)} - (n+1){f(1) + f(3) + ・・・・ + f(2n-1)} >0,


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch