19/03/25 08:39:24.64 6hP+02zx.net
X ⊂ R^{m+n} とする。
P(X) := {(y_1, …, y_m) ∈ R^m | (x_1, …, x_n, y_1, …, y_m) ∈ X}
と定義する。
U_λ を R^{m+n} の開集合とする。
このとき、
P(U_λ) ⊂ R^n は開集合である。
証明:
(y_1, …, y_m) ∈ P(U_λ) とする。
(x_1, …, x_n, y_1, …, y_m) ∈ U_λ
U_λ は開集合だから、
∃a_1, a'_1 …, a'_n, a_n ∈ R
∃b_1, b'_1 …, b'_m, b_m ∈ R
such that
(x_1, …, x_n, y_1, …, y_m) ∈ (a_1, a'_1) × … × (a_n, a'_n) × (b_1, b'_1) × … × (b_m, b'_m) ⊂ U_λ
(y_1, …, y_m) ∈ (b_1, b'_1) × … × (b_m, b'_m) = P((a_1, a'_1) × … × (a_n, a'_n) × (b_1, b'_1) × … × (b_m, b'_m)) ⊂ P(U_λ)
∴P(U_λ) は開集合である。