19/03/05 22:21:01.37 bpbVx3pt.net
>>902
つづき
URLリンク(ja.wikipedia.org)
正則性公理
(抜粋)
正則性公理と整礎的集合
正則性公理を用いると、すべての集合が整礎的であることが示される。
URLリンク(ja.wikipedia.org)
整礎関係
(抜粋)
集合 x が整礎的集合 (well-founded set) であることは、∈ が x の推移閉包上で整礎関係となることと同値である。ZF における公理のひとつである正則性の公理は、全ての集合が整礎であることを要請するものである。
例として、整礎関係 (N, S) を考える。ここで N は自然数全体のなす集合で、S は後者函数 x → x + 1 のグラフとする。S 上の帰納法は通常の数学的帰納法であり、S 上の再帰は原始再帰を与える。順序関係 (N, <) からは完全帰納法 (complete induction) と累積帰納法 (course-of-values recursion) が得られる。 (N, <) が整礎関係であるという言明は整列原理としても知られる。
URLリンク(ja.wikipedia.org)
ペアノの公理
(抜粋)
存在と一意性
二つのペアノシステム (X, x, f) と (Y, y, g) は次の条件を満たす全単射 φ: X→Y が(唯一つ)存在するときに同型であるという:
φ(x) = y
X の任意の元 a に対して φ(f(a)) = g(φ(a))
一階述語論理で定式化されたペアノの公理は、無数の超準モデルを持つ。(レーヴェンハイム=スコーレムの定理)
二階述語論理によって定式化することで、ペアノシステムを同型の違いを除いて一意に定めることができる[1]。
(引用終り)
以上