19/03/01 23:46:48.16 lY5li5u4.net
>>671
>当然、πの計算もあるでよw(^^
高木先生の本にもあるが
ガウスは、レムニスケートの弧長と、1と√2の算術幾何平均M とで
Mとπ/2ωが 小数第11位まで一致することを確かめたという(下記)
当然、πは近似値だわな
ガウスの計算は、数学ではなく、算数なのか? サイコちゃんw(^^
URLリンク(www.nms.ac.jp)
数学、自然、コンピューター 渡辺浩 日本医科大学基礎科学紀要 第 40 号 (2011)
(抜粋)
P64
ガウスの計算
1799年5月30日の日記には、1と√2の算術幾何平均M と
ω(レムニスケートの弧長)で
Mとπ/2ωが 小数第11位まで一致することを確かめたという記述がある。
ガウスはこの発見を重視して、もしも
M=π/2ω
であることが証明されれば、「解析の新分野が聞かれるであろう」と考えたという。ちなみに、
積分(5)は、1797年以来ガウスが調べていた「レムニスケート」と呼ばれる曲線(図3)の長
さ(の1/4)を表す式である。
(引用終り)