現代数学の系譜 工学物理雑談 古典ガロア理論も読む61at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む61 - 暇つぶし2ch268:現代数学の系譜 雑談 古典ガロア理論も読む
19/02/22 15:04:31.77 2jiflFZh.net
追加
>ランダム行列でも、当然、確率変数が登場します(^^
ランダム行列では、確率変数は、添え字が二つで、Xj,kとなります(二次元)
行列のサイズは、当然のように、無限大を扱います
なので、明らかに時枝の箱(1次元)も、広い意味の現代確率理論の射程内です
(追加抜粋)
・モーメント
確率分布のモーメント (確率論)(平均や分散)の指定がある場合は、確率変数をXj,k として
E(Xj,k) = 0
E((Xj,k)2) = 1
E(|Xj,k|k) < ∞
のように条件が指定される
ガウス分布であれば記法N(μ,σ2)を用いて Xj,k = N(0,1) のように指定される
行列要素の自由度
行列要素を決定する独立した確率変数の数。行列要素が実数なら1、複素数なら2、四元数なら4となる。ダイソン指数(β)と呼ぶこともある
行列要素の分布
行列要素の分布は大きく2つに分かれる
1.各行列要素 Xj,k が独立していて一様にランダムな場合。例えば、 Xj,k = N(0,1) のようにどの行列要素も独立同一分布(i.i.d.)に従う場合
2.行列要素の間に対称性などの制約条件が存在する場合
(引用終わり)


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch