巨大数探索スレッド15at MATH
巨大数探索スレッド15 - 暇つぶし2ch170:132人目の素数さん
19/03/30 22:25:18.11 WscCY+eS.net
ミス 最後の行
hyper(a, b+1, Y, c+1, X) = hyper(a, A, hyper(a, b, Y, c+1, X), c, X)

171:名無し
19/03/31 14:18:30.21 YE8JQmie.net
rT階層を次のように定義する
rT_0(n)=n
rT_n+1(m)=rT_n(rT_n(m))
rT_順序数(n)=rT_順序数[n](n)
ここで順序数[n]=順序数のn番目の基本列とする
だれか増加速度の比較作ってくだXi

172:132人目の素数さん
19/03/31 22:19:00.26 M9MUgRE7.net
,X,2(1)2}&ω = θ(Ω_2^三_2)
X↑↑X&X&ω = θ(ε_(Ω_2+1))
X↑↑↑X&X&ω = θ(φ(2,Ω_2+1))
{X,X,1,2}&X&ω = θ(⑤;ap-./

173:132人目の素数さん
19/03/31 22:22:12.84 M9MUgRE7.net
3/3]0~2sin∠OPO'=1/3
2sin∠OPO'-(8/3)(sin∠OPO')^3=1/3
6sin∠OPO'-8(sin∠OPO')^3=1
前問同様、∠OPO'=10゜ ⛟⛴✈,I'm

174:132人目の素数さん
19/03/31 22:40:31.26 C/24uQ1w.net
>>167
rT_m(n) = n
増えてねーぞ何かの間違いではないか?
仮に、rT_0(n) = n+1とすると
rT_m(n) = n+2^m
rT_ω(n) = n+2^n
f_0(n) ≦ rT_m(n) < f_1(n) < rT_ω(n) < f_2(n) < rT_ω+1(n)
Hardy<rT<FGH
H_ε_0 ≒ rT_ε_0 ≒ f_ε_0

175:132人目の素数さん
19/04/01 01:23:29.87 H5EzJXhs.net
超現実数というのがある
これは、実数を超限順序数まで拡張したようなものらしい
0 = {|}
1 = {0|}
2 = {1|}
-1 = {|0}
-2 = {|-1}
1/2 = {1|2}
3/4 = {1/2|1}
詳しくはWikipedia参照だが、巨大数に使えないか気になる

176:名無し
19/04/01 06:43:37.50 uWYy5Pf2.net
>>170
それは単なるミス
補遺
rT_ω^ω(n)を急増化関数にしてみた
rT_ω^n(n)
こっから分からん

177:132人目の素数さん
19/04/01 22:18:23.38 R0XakP4d.net
『与えられた数より小さい素数の個数について』

178:132人目の素数さん
19/04/01 23:19:22.85 x7Uv5aF5.net
リーマンの論文なのか
ググっちまったぜ

179:132人目の素数さん
19/04/01 23:33:56.50 H5EzJXhs.net
2^i = 3^j-1 となる (i, j): (1, 1), (3, 2), ?
・無数に存在するだろうか?
・増加速度は?

180:名無し
19/04/02 19:35:01.77 tBb0oewM.net
新しい巨大数を考えた。
V(n)=n↑^[n]n
V^n(n)=R(n)
R(n)_m=R^V(m)(n)
R(n)_n=Ce(n)
Ce^64(4)をNaNaSi数v1とする

181:132人目の素数さん
19/04/02 19:59:03.31 sDKNM61o.net
>>176
V(n) ≒ f_ω(n)
R(n) ≒ f_ω+1(n)
Ce(n) = R^V(n) (n) ≒ f_ω+2(n)

182:132人目の素数さん
19/04/02 20:01:53.34 F62bdvSw.net
【登録約8000人】思ってたよりYouTube儲かる件
URLリンク(www.youtube.com)
【初任給】YouTubeを始めて初めていただいた月収はこちらです!広告収入って一体いくらなの?
URLリンク(www.youtube.com)
YouTubeって儲かるの?収益化審査通過!Googleアドセンス初入金のご報告。
URLリンク(www.youtube.com)
1再生「0.1円」は全部嘘です。登録者7万人の広告収入で生活できる?
URLリンク(www.youtube.com)
YouTuber最新給料事情|vol.093
URLリンク(www.youtube.com)
シバターがヒカルとラファエルの収入を暴露
URLリンク(www.youtube.com)
【20万人目前】アディ男月収いい波乗ってんの?
URLリンク(www.youtube.com)
YouTubeの広告収益が月200万を超えました。【収益公開】
URLリンク(www.youtube.com)
登録者15000人の収益公開します。【第一回質問コーナー】
URLリンク(www.youtube.com)
底辺YouTuberの収益公開!
URLリンク(www.youtube.com)

183:132人目の素数さん
19/04/02 20:11:37.55 R7+65PTi.net
>>175
それしか無いのは高校生なら示せるようにしたいところ。

184:名無し
19/04/03 07:49:53.76 bEwUlgac.net
NaNaSi数v2は以下のような定義です。
V(n),R(n),Ce(n)....って感じの関数の列のn番目の関数をXu[n]とする
例:Xu[3](3)=Ce(3)
By(n,m)=Xu[n](m)↑^[Xu[n](m)] Xu[n](m)とする
By(10,10)をNaNaSi数第1定数とする
By(NaNaSi数第1定数、NaNaSi数第1定数)をNaNaSi数v2とする

185:名無し
19/04/03 17:26:56.75 bEwUlgac.net
これってf_ω2+1(10)くらいか?

186:132人目の素数さん
19/04/04 18:54:48.44 JhrAbORS.net
段階的に定義
======================
a,x={非負整数}
A=f[a+1](x)
f[0](x)=x+1
f[a+1](0)=f[a](1)
f[a+1](x+1)=f[a](A)
======================
a,n,x={非負整数}
X={0個以上の非負整数}
a#n={n個のa}
B=f[0#(n+1)](x)
A=f[X,a+1,0#n](x)
f[](x)=x+1
f[0#(n+1)](0)=f[1#n](1)
f[0#(n+1)](x+1)=f[B#n](B)
f[X,a+1,0#n](0)=f[X,a,1#n](1)
f[X,a+1,0#n](x+1)=f[X,a,A#n](A)

187:132人目の素数さん
19/04/04 18:55:24.60 JhrAbORS.net
======================
a,m,n,x={非負整数}
X={0個以上の非負整数}
a#n={n個のa}
[]={0個のリスト}
[@]={0個以上の非負整数の0個以上のリスト}
[X]{m}={m個のXのリスト}
C=f[]{m+1}(x)
B=f[@][0#(n+1)][]{m}(x)
A=f[@][X,a+1,0#n][]{m}(x)
f(x)=x+1
f[]{m+1}(0)=f[1]{m}(1)
f[]{m+1}(x+1)=f[C#C]{m}(C)
f[@][0#(n+1)][]{m}(0)=f[@][1#n][1]{m}(1)
f[@][0#(n+1)][]{m}(x+1)=f[@][B#n][B#B]{m}(B)
f[@][X,a+1,0#n][]{m}(0)=f[@][X,a,1#n][1]{m}(1)
f[@][X,a+1,0#n][]{m}(x+1)=f[@][X,a,A#n][A#A]{m}(A)

188:132人目の素数さん
19/04/04 18:55:55.05 JhrAbORS.net
======================
a,k,m,n,x={非負整数}
X={0個以上の非負整数}
a#n={n個のa}
[]={0個のリスト}
[@]={0個以上の非負整数の0個以上のリスト}
[X]{m}={m個のXのリスト}
[[]]={0個のリストのリスト}
[[@]]={0個以上の非負整数の0個以上のリストの0個以上のリスト}
[[X]{m}]{k}={m個のXのリストのk個のリスト}
D=f[[]]{k+1}(x)
C=f[[@]][[]{m+1}][[]]{k}(x)
B=f[[@]][[@][0#(n+1)][]{m}][[]]{k}(x)
A=f[[@]][[@][X,a+1,0#n][]{m}][[]]{k}(x)
f(x)=x+1
f[[]]{k+1}(0)=f[[1]]{k}(1)
f[[]]{k+1}(x+1)=f[[D#D]{D}]{k}(D)
f[[@]][[]{m+1}][[]]{k}(0)=f[[@]][[1]{m}][[1]]{k}(1)
f[[@]][[]{m+1}][[]]{k}(x+1)=f[[@]][[C#C]{m}][[C#C]{C}]{k}(C)
f[[@]][[@][0#(n+1)][]{m}][[]]{k}(0)=f[[@]][[@][1#(n+1)][1]{m}][[1]]{k}(1)
f[[@]][[@][0#(n+1)][]{m}][[]]{k}(x+1)=f[[@]][[@][B#n][B#B]{m}][[B#B]{B}]{k}(B)
f[[@]][[@][X,a+1,0#n][]{m}][[]]{k}(0)=f[[@]][[@][X,a,1#n][1]{m}][[1]]{k}(1)
f[[@]][[@][X,a+1,0#n][]{m}][[]]{k}(x+1)=f[[@]][[@][X,a,A#n][A#A]{m}][[A#A]{A}]{k}(A)

189:132人目の素数さん
19/04/04 19:05:13.70 8tdGoRyS.net
()の中の数字はともかく、関数はそれ・・・と同じ位だと思うけど
By(n,m)=Xu[n](m)としても同じ位の強さになる
↑を使う必要はあまりないと思う

190:名無し
19/04/04 19:14:51.95 aQAJXzIV.net
ちょっと頑張ってみる
[n,m]=By(n^2,m^2)
[n,m,1]=[[n,m],[n,m]]
[n,m,2]=[[n,m,1],[n,m,1],1]
[n,m,3]=[[n,m,2,],[n,m,2],2]
.....
Uu(n)=[n,n,n]とする
Uu^Uu(3)(3)をNaNaSi数v3とする
小さい自信はある

191:132人目の素数さん
19/04/04 19:27:20.95 8tdGoRyS.net
1次元 ω^n×a_n+…+ω^1×a_1+a_0 < ω^ω
2次元 ω^(ω×b+c)×a < ω^ω^2
n次元 < ω^ω^ω

192:名無し
19/04/06 09:26:56.17 zuI36pBb.net
俺もω_1^CKくらいの関数はいきたいんだけど
出来るだけ単純にしたいんだよなあ

193:132人目の素数さん
19/04/06 13:29:38.13 iqcrBWJ/.net
海外はあまり集合論分かってないから巨大数が滅茶苦茶みたいな話があるけど、個人的に集合論はZFCの中で研究してるイ�


194:=[ジあるから、メタ的な視点が大きく入り込むのは集合論ではなくモデル論や証明論といった別の分野な気はするよなぁ 集合論をやる上ではメタ理論という概念は形式上全く必要ないし



195:名無し
19/04/06 14:36:26.60 zuI36pBb.net
ZFCって何ぞや?

196:132人目の素数さん
19/04/06 15:02:16.06 AsxdouUr.net
そうなるよな
巨大数にはZFC公理系の理解が必須だが(東方巨大数のルールにも記述されてる)
解説がどこにもないからなぁ……

197:132人目の素数さん
19/04/06 15:40:14.90 0SIDtnpY.net
ただわかったと思うのと、使いこなすのは別かもしれないが、とりあえずWikipedia見ればわかった気になる

198:名無し
19/04/06 16:19:14.91 zuI36pBb.net
なるほど、わからん!

199:名無し
19/04/07 11:34:41.02 pZ89/W7Q.net
皆ゲームやろうぜ!
関数T:Nk↦Nが区分線形 (piecewise linear) であるとは、整数係数の不等式による条件分けされた有限個の一次関数によって表記できることを意味するものとする。
区分線形関数Tに対して、ベクトルy∈Nkがxに対するTの逆変換であるとは、T(y)=xを満たすことを意味するものとする。
区分線形関数T:Nk↦Nと、2つの正の整数nとsが与えられた時に、
有限区分線形約束ゲーム (finite piecewise linear copy/invert game, 略してFPLCIゲーム) G(T,n,s) を、次のように定義する。G(T,n,s)は、マシモとうるかの間の2人ゲームで、nラウンドで終了する。マシモが先手である。
マシモの手番では、w! または y+z となるようなx∈[0,s] を選ぶ。ここで、yとzはうるかがそれまでに選んだ数字でなければならない。xがマシモの提案である。うるかは、その提案を受け入れるか拒否することを選ぶことができる。
提案を受け入れた時には、うるかはxを選んで、うるかは決してxのTによる逆変換の中から数字を選ばないと約束する。
提案を拒否した時には、xのTによる逆変換の中から好きな数字を選んで、決してxを選ばないと約束する。
うるかが約束を破ると、うるかの負けである。うるかがnラウンドすべて約束を破らなければ、うるかの勝ちである。ここで、約束はうるかの過去、現在、未来のすべての手番に適用される。
....うん。

200:132人目の素数さん
19/04/07 17:10:53.37 HPBunS9p.net
CoCがZFCより強いかはともかく、少なくとも2階述語論理と同じ強さがあるのは確かだろう
CoCでは述語を量化できるから

201:132人目の素数さん
19/04/07 17:16:56.25 HPBunS9p.net
いや、そうではないのか?
もしかするとCoCで量化できる述語には制限があるかもしれない
まだあまり理解してないからわからないけど
ところで、1階と2階があるなら3階以上の算術や述語論理はあるんだろうか?
1階算術→∀n:自然数
2階算術→∀X:集合
1階述語論理→∀x:物
2階述語論理→∀φ:述語
また、2階述語論理のサブセットは何かあるだろうか
ZFが集合の構成法を制限したように、述語の構成法を制限したようなものは

202:132人目の素数さん
19/04/07 17:22:06.47 HPBunS9p.net
今Wikipedia見たら、高階述語論理の例として、CoCがあった
そうか、そうだよな、CoCでは述語に関する述語をつくることもできるもんな

203:名無し
19/04/07 18:13:53.22 pZ89/W7Q.net
CoCはローダー数の理論であり同時に術後の一種でもある
すなっわちkskl、lhがgfぁ;うdpg
本編:CoCって何?

204:132人目の素数さん
19/04/07 2


205:0:52:06.05 ID:HPBunS9p.net



206:132人目の素数さん
19/04/08 04:11:43.84 i4BJQ/Wc.net
URLリンク(www.amazon.co.jp) amzn1.account.AG7IMTGXGB7V5LN6Z2GH52VKIUWA
きちがいゴキブリニホンザル国産ゴミをフェイク主張世界のゴミ箱ヒトモドキニホンザル抹殺しろ

207:132人目の素数さん
19/04/08 05:11:02.81 4HQjO0yS.net
URLリンク(www.youtube.com)
マナー違反強姦虐殺迷惑戦犯非論理キチガイ反中ヒトモドキニホンザル自殺しろこの世から消え去れ

208:名無し
19/04/08 06:46:31.15 PzjLvJeC.net
>>201
>>200
今すぐそれをやめろ

209:132人目の素数さん
19/04/08 22:17:06.72 113KJLrX.net
Loader.cをさらに少し展開してみた
URLリンク(pastebin.com)
CoCについて少し解説
AからNへの関数は「λx:A.N」と表す(「(x:A) N」と表記されることもある)
この関数の型は「∀x:A.B」である(このときN:B; 「[x:A] B」や「A⇒B」と表記されることもある)
自然数 (チャーチ数)
Nat = ∀A:P. ∀s:(A⇒A). ∀z:A. A
0: Nat = λA:P. λs:(A⇒A). λz:A. z
1: Nat = λA:P. λs:(A⇒A). λz:A. s z
真偽値
Bool = ∀A:P. A⇒A⇒A
true: Bool = λA:P. λx y:A. x
false: Bool = λA:P. λx y:A. y

210:名無し
19/04/09 07:48:34.15 AnWB/a8J.net
>>186の拡張チャレンジ&NaNaSi数v4
[a,b,c,d]=[[a,b,c],[a,b,c],d]
[a,b,c,d,e]=[[a,b,c,d],[a,b,c,d],e]
以下同様
本編
a[]b=[a,a,..b回...,a,a]
a[[]]b=a[]a[]a..b回..a[]a[]a
この表記が連なっているときは、右から計算する。
例:2[]3[]4=2[][3,3,3,3]
10[[[[[[[]]]]]]]10をNaNaSi数v4とする
↑[4,5,6]回

211:132人目の素数さん
19/04/09 19:41:57.51 s8FDTA4Y.net
チェーン表記は低位な数を見捨てた結果ω^2になったが
多変数アッカーマンやBEAFは見捨てなかった結果ω^ωになった
姥捨て山的好例といえるだろう
ということで右矢印表記作ります
…→1 = …
a→b+1 = a[↑(a→b)]a
a[↑m]1[↑n]…[↑o]y→z = a→z
a[↑m]…[↑n+1]y+1→z = a[↑m]…[↑n](a[↑m]…[↑n+1]y→z)→z
3→2 = チェーン表記 3→3→3
3↑3→2 = 3[↑(3↑2→2)]3 = 3[↑(3[↑(3→2)]3)]3 = 3[↑(3[↑(3[↑3]3)]3)]3 ~ チェーン表記 3→3→4→2
3↑n→2 ~ チェーン表記3→3→n→2
3↑↑2→2 = 3↑(3→2)→2 ~ チェーン 3→3→(3→3→n→2)→2
右矢印2つ以上は後で考える

212:132人目の素数さん
19/04/09 21:14:10.09 s8FDTA4Y.net
ε_0未満の順序数をエンコード
[2^n] = n
[3^2^n] = ω×(1+n)
[3^3^2^n] = ω×(1+ω×(1+n)) = ω^2×(1+n)
[3^3^3^2^n] = ω×(1+ω×(1+ω×(1+n))) = ω^3×(1+n)
[5^2^n] = ω^ω×(1+n)

213:132人目の素数さん
19/04/09 21:17:41.85 s8FDTA4Y.net
[1]=0, [2]=1, [3]=ω, [4]=2, [5]=ω^ω, [6]=ω+1, [7]=?, [8]=3, [9]=ω×2, ...

214:132人目の素数さん
19/04/10 18:32:49.01 dSu8e9GD.net
順序数を2種類のカッコで表現
[]=1
[][]=2
[][][]=3
[[]]=ω
[[]][]=ω+1
[[]][][]=ω+2
[[]][[]]=ω×2
[[]][[]][]=ω×2+1
[[]][[]][[]]=ω×3
[[][]]=ω^2
[[][]][]=ω^2+1
[[][]][[]]=ω^2+ω
[[][]][[]][[]]=ω^2+ω×2
[[][]][[][]]=ω^2×2
[[][][]]=ω^3
[[][][][]]=ω^4
[[[]]]=ω^ω
[[[]]][]=ω^ω+1
[[[]]][


215:[]]=ω^ω+ω [[[]]][[][]]=ω^ω+ω^2 [[[]]][[[]]]=ω^ω×2 [[[]][]]=ω^(ω+1) [[[]][][]]=ω^(ω+2) [[[]][[]]]=ω^(ω×2) [[[]][[]][[]]]=ω^(ω×3) [[[][]]]=ω^ω^2 [[[][]][]]=ω^(ω^2+1) [[[][]][[]]]=ω^(ω^2+ω) [[[][]][[][]]]=ω^(ω^2×2) [[[][][]]]=ω^ω^3 [[[][][][]]]=ω^ω^4 [[[[]]]]=ω^ω^ω [[[[[]]]]]=ω^ω^ω^ω



216:132人目の素数さん
19/04/10 18:33:33.72 dSu8e9GD.net
[()]=ε_0
[()][]=ε_0+1
[()][[]]=ε_0+ω
[()][[[]]]=ε_0+ω^ω
[()][()]=ε_0×2
[()[]]=ε_0×ω
[()[[]]]=ε_0×ω^ω
[()[()]]=ε_0^2
[()[()][]]=ε_0^2×ω
[()[()][[]]]=ε_0^2×ω^ω
[()[()][()]]=ε_0^3
[()[()][()][()]]=ε_0^4
[()[()[]]]=ε_0^ω
[()[()[[]]]]=ε_0^ω^ω
[()[()[()]]]=ε_0^ε_0
[()[()[()]][]]=ε_0^ε_0×ω
[()[()[()]][[]]]=ε_0^ε_0×ω^ω
[()[()[()]][()]]=ε_0^(ε_0+1)
[()[()[()]][()][()]]=ε_0^(ε_0+2)
[()[()[()]][()[]]]=ε_0^(ε_0+ω)
[()[()[()]][()[[]]]]=ε_0^(ε_0+ω^ω)
[()[()[()]][()[()]]]=ε_0^(ε_0×2)
[()[()[()]][()[()]][()[()]]]=ε_0^(ε_0×3)
[()[()[()][]]]=ε_0^(ε_0×ω)
[()[()[()][[]]]]=ε_0^(ε_0×ω^ω)
[()[()[()][()]]]=ε_0^ε_0^2
[()[()[()][()][()]]]=ε_0^ε_0^3
[()[()[()[]]]]=ε_0^ε_0^ω
[()[()[()[[]]]]]=ε_0^ε_0^ω^ω
[()[()[()[()]]]]=ε_0^ε_0^ε_0
[()[()[()[()[()]]]]]=ε_0^ε_0^ε_0^ε_0

217:132人目の素数さん
19/04/10 18:34:10.00 dSu8e9GD.net
[()()]=ε_1
[()()[]]=ε_1×ω
[()()[[]]]=ε_1×ω^ω
[()()[()]]=ε_1×ε_0
[()()[()()]]=ε_1^2
[()()[()()[()()]]]=ε_1^ε_1
[()()[()()[()()[()()]]]]=ε_1^ε_1^ε_1
[()()()]=ε_2
[()()()()]=ε_3
[([])]=ε_ω
[([[]])]=ε_(ω^ω)
[([()])]=ε_ε_0
[([()()])]=ε_ε_1
[([([])])]=ε_ε_ω
[([([()])])]=ε_ε_ε_0
[([([([()])])])]=ε_ε_ε_ε_0

218:132人目の素数さん
19/04/10 18:34:38.94 dSu8e9GD.net
[(())]=ζ_0
[(())[]]=ζ_0×ω
[(())[()]]=ζ_0×ε_0
[(())[(())]]=ζ_0^2
[(())[(())[]]]=ζ_0^ω
[(())[(())[()]]]=ζ_0^ε_0
[(())[(())[(())]]]=ζ_0^ζ_0
[(())()]=ζ_1
[(())([])]=ζ_ω
[(())([()])]=ζ_ε_0
[(())([(())])]=ζ_ζ_0
[(())([(())()])]=ζ_ζ_1
[(())([(())([])])]=ζ_ζ_ω
[(())([(())([()])])]=ζ_ζ_ε_0
[(())([(())([(())])])]=ζ_ζ_ζ_0

219:132人目の素数さん
19/04/10 18:49:04.38 FqvQmGV7.net
[a][b] = [a]+[b]
[a] = ψ_0(a)
(a) = ψ_1(a)
[((…()…))] = ψ_0(ψ_1(ψ_2(0))) = θ(ε_(Ω+1))

220:132人目の素数さん
19/04/10 20:42:17.92 t8oY45Fb.net
あれ2種類のカッコでそんなに行くんだっけ?

221:132人目の素数さん
19/04/10 21:19:27.63 FqvQmGV7.net
ラベルがない木の限界は、必ずε_0になるのだろうか?
ヒドラなどでは、同じ頂点から複数の枝が出ている場合、それらの和になるが、必ずしもそうする必要はないだろう
枝の並び替えに依存しない方が好ましいかもしれないが、そも、順序数の和は非可換だ
例えば1+ω≠ω+1だし、和にする必要はないだろう

222:132人目の素数さん
19/04/10 21:20:54.37 FqvQmGV7.net
>>213
ブーフホルツのヒドラで、ラベルを0と1だけに制限した場合に相当する

223:132人目の素数さん
19/04/10 21:39:11.85 FqvQmGV7.net
RCA_0の言語+集合A,Bから超現実数をつくる記号{A,B}でω_1^CKの基本列を定義できるかもしれない
RCA_0を対角化することでetc...

224:132人目の素数さん
19/04/10 23:24:20.35 U0a4YyOy.net
ブーフホルツってデカイんだな
勉強になったわ

225:132人目の素数さん
19/04/10 23:41:57.97 OQd+xlc6.net
ハイパー演算の二項演算子を一種類のカッコで表現したヒドラに置き換えるとfε0(n)になった
二種類のカッコでやったらそのサイズになるのかな

226:名無し
19/04/11 06:42:59.70 Gp9clnFb.net
>>216
おお!
なんか理解できないけどすごそう。

227:132人目の素数さん
19/04/11 20:17:55.11 m6wwTrbt.net
>>219
発想
RCA_0って計算可能数学って呼ばれるらしいっすね
ならRCA_0で定義できる=計算可能ってことじゃね
計算可能な順序数すべての上の対角化って計算不可能になるんじゃね

228:132人目の素数さん
19/04/11 20:41:58.57 zdII+1tt.net
え、ω_1^CKの基本列を定義出来たらかなりすごいよね?
ビジービーバーの値が求まっちゃうくらいすごい?

229:132人目の素数さん
19/04/11 20:46:32.42 m6wwTrbt.net
関係ないかもしれないがくら寿司の求人サイトが虚空っぽい感じに(宇宙)

230:名無し
19/04/13 16:18:31.29 In9p6lks.net
ω_1^CKの基本列がRCA0により定義されようとしている今、東方巨大数3が始まろうとしている。
そして、このコメントを書いている今も、巨大数は進化し続けているだろう。
そこに、f_Γ_0(10)レベルの数を作る合作が始まる....!
というわけでf_Γ_0(n)の関数作りたい皆は、この合作に参加しよう!
後質問。
ω_ω_1^CK^CKって定義可能?

231:132人目の素数さん
19/04/14 00:46:39.27 +tIDaccB.net
y1=log(n1)*x-2*(m1)*π 2*(m1)/log(n1) ≦ x < 2*(m1+1)/log(n1)    0≦y1<2π
y2=log(n2)*x-2*(m2)*π 2*(m2)/log(n2) ≦ x < 2*(m2+1)/log(n2) 0≦y2<2π
y3=log(n1/n2)*x-2*(m3)*π 2*(m3)/log(n1/n2) ≦ x < 2*(m3+1)/log(n1/n2) 0≦y3<2π
m1、m2、m3=任意の整数
n1、n2=任意の実数
y1=y2=y3=πをみたすxは存在しない
y1=y2のとき
log(n1)*x-2*(m1)*π=log(n2)*x-2*(m2)*π
log(n1/n2)*x=2*(m1-m2)*π
x=2*(m1-m2)*π/log(n1/n2)
y3=2*(m1-m2-m3)*π
y2=y3のとき
log(n2)*x-2*(m2)*π=log(n1/n2)*x-2*(m3)*π
x=2*(m2-m3)*π/log(n2^2/n1)
y1=2*(m2-m3)*π*log(n1)/log(n2^2/n1)-2*(m1)*π

y1=y3のとき
log(n1)*x-2*(m1)*π=log(n1/n2)*x-2*(m3)*π
x=2*(m1-m3)*π/log(n2)
y2=2*(m1-m2-m3)*π

232:名無し
19/04/14 06:14:47.65 MMyuluRW.net
>>224
...
......

233:名無し
19/04/14 13:54:54.15 MMyuluRW.net
自分的巨大数ランク分け
~ω Weak
ω+1~ω^ω Fate
ω^ω+1~ε_0 Dimensional
ε_0+1~φ(ω,0) Noah's ark
φ(ω,0)+1~ϑ(Ω^ω) Exalarge
ϑ(Ω^ω)~ψ(ψ_i(0)) Vendekanumber
ψ(ψ_i(0))+1~ω_1^CK Verseverse
ω_1^CK~ Beaver House
と言うわけだ。

234:132人目の素数さん
19/04/14 14:57:03.04 +tIDaccB.net
√(X^2+Y^2+Z^2-2*(X*Y+Y*Z+Z*X))=0
√X=√Y+√Zのとき√(X^2+Y^2+Z^2-2*(X*Y+Y*Z+Z*X))=0
√(X^2+Y^2+Z^2-2*(-X*Y+Y*Z+Z*X))=2*√(X*Y)
X+Y-Z=2*√(X*Y)のとき√(X^2+Y^2+Z^2-2*(X*Y+Y*Z+Z*X))=0で√X=√Y+√Z
√(X^2+Y^2+Z^2-2*(-X*Y-Y*Z-Z*X))=2*√(X*Y+Y*Z+X*Z)
X+Y+Z=2*√(X*Y+Y*Z+X*Z)のとき√X=√Y+√Z
X^6+Y^6+Z^6=2*√(X^6*Y^6+Y^6*Z^6+X^6*Z^6)のときX^3=Y^3+Z^3 👀
Rock54: Caution(BBR-MD5:1341adc37120578f18dba9451e6c8c3b)


235:132人目の素数さん
19/04/15 21:18:40.95 pKzTSSRO.net
Cantor: 1, ω, ω^ω, ω^ω^ω, ... < ε_0
Veblen0: 1, ε_0, φ(2,0), φ(3,0), ... < φ(ω,0)
Veblen1: 1, ω, ε_0, Г_0, φ(1,0,0,0), φ(1,0,0,0,0), ... < θ(Ω^ω)
Veblen2: θ(Ω), θ(Ω^θ(Ω)), θ(Ω^θ(Ω^θ(Ω))), ... < θ(Ω^Ω)
Theta1: θ(Ω), θ(Ω^Ω), θ(Ω^Ω^Ω), ... < θ(ε_(Ω+1))
Theta2: θ(Ω), θ(Ω_2), θ(Ω_3), ... < θ(Ω_ω)
Theta3: θ(Ω), θ(Ω_Ω), θ(Ω_Ω_Ω), ... < ψ_0(ψ_I(0))
Psi1: ψ_0(ψ_I(0)), ψ_0(ψ_I(ψ_I(0))), ... < ψ_0(ψ_I(I))

236:132人目の素数さん
19/04/15 23:33:28.46 pKzTSSRO.net
g_0 = λn:N. 0
g_α = min{f∊F | ∀β<α. g_β<f}
f<g ⇔ ∃n:N. ∀m:N. n≦m → f(m)<g(m)
g_m(n) = m
g_ω(n) = n
g_ω^2(n) = n^2
g_ω^ω(n) = n^n
g_ε_0(n) = n↑↑n
g_αの集合Fをどうやって定義するか?

237:132人目の素数さん
19/04/15 23:39:36.97 pKzTSSRO.net
やっぱFじゃなくてGを使おう
G(α)={g_β|β<α}とすると
G(ω)={定数関数}
g_ω(n)はG(ω)の列挙
g_ω+1(n)はG(ω)-{0}の列挙
g_ω+1(n)はG(ω)-{0,1}の列挙
g_ω2(n)は・・・

238:名無し
19/04/16 17:23:58.85 CFYQGB8/.net
久しぶりのNaNaSi数シリーズ
[a,b,c]_2=[[a,b,c],[a,b,c],[a,b,c]]
[a,b,c]_3=[[[a,b,c],[a,b,c],[a,b,c]],[[a,b,c],[a,b,c],[a,b,c]],[[a,b,c],[a,b,c],[a,b,c]]]
以降同様に拡張できる
[a,b,c]_[a,b,c]_[a,b,c]...と言う風に続く場合、下から計算する。
[a,b,c]_[a,b,c]_...[a,b,c]回...[a,b,c]_[a,b,c]をLe(a,b,c)とする
Le(10,10,10)をNaNaSi数v5とする

239:132人目の素数さん
19/04/16 20:40:39.07 IKKFiA83.net
>>231
[a,b,c]の定義がわからん。それがないと[a,b,c]_2とかが定義できなくない?

240:132人目の素数さん
19/04/17 04:17:39.54 bFYghqTq.net
BEAFを順序数で表現してみる
1. 線形配列: ω^ω未満の順序数で表すことができる
{3,3,1,2} = {ω^3+ω3+3}
2. 多次元配列: ω^ω^ω未満
{3,3(1)2} = {ω^ω 2+ω3+3}
{3,3(1)(1)2} = {ω^ω2 2+ω3+3}
{3,3(2)2} = {ω^ω^2 2+ω3+3}
{3,3(3)2} = {ω^ω^3 2+ω3+3}
3. テ�


241:gレーション配列: ε_0未満 {3,3(0,1)2} = {ω^ω^ω 2+ω3+3} {3,3(1,1)2} = {ω^ω^(ω+1) 2+ω3+3} {3,3(0,0,1)2} = {ω^ω^ω^2 2+ω3+3} {3,3((1)1)2} = {(ω↑↑4) 2+ω3+3} {3,3(((1)1)1)2} = {(ω↑↑5) 2+ω3+3} 配列次元演算子: θ(Ω_ω)未満 a&b = {b,a(1)2} = {ω^ω 2+ω a+b} (a↑↑a)&b = {ε_0 2+ω a+b} {a,a,a}&b = {φ(ω,0) 2+ω a+b} {a,a,1,2}&b = {θ(0) 2+ω a+b} {a,a(1)2}&b = {θ(Ω^ω) 2+ω a+b} (a↑↑a)&a&b = {θ(φ(1,Ω+1)) 2+ω a+b} {a,a,1,2}&a&b = {θ(Ω_2) 2+ω a+b} {a,a,1,2}&a&a&b = {θ(Ω_3) 2+ω a+b} なお、θ(Ω_ω)未満の順序数は、α+β、φ(α,β)、θ(α)の組み合わせで表すことができる



242:132人目の素数さん
19/04/17 04:36:48.65 bFYghqTq.net
レギオン
{b,a/2} = {θ(Ω_ω) 2+ωa+b} ?
{b,a/1,2} = {θ(Ω_Ω) 2+ωa+b} ?

243:名無し
19/04/17 05:39:57.32 giDrbFmc.net
>>232
>>204>>186にある

244:132人目の素数さん
19/04/17 06:26:28.87 nR7yV5eM.net
京都大学霊長類研究所とかわらえてくるけど
まあボタン押ししかできなくなった人が何をするのか
昔牢屋から脱走するのはなんたら問題が在って
怖くなったら一瞬で出るっていったんだけど
まあ実際家を飛び出したりいろんなことがあった
平和だと言われていた時間はみんな閉じ込められてたんだね
おれそんなのしらなかったわ
おれいえからでなくなったけどただかんがえてただけだったからね
そもそもおとなしいこでした
でも学校に行くときだけは元気でした
最初から閉じ込められていると思っている人だと
さて問題です
最初から閉じ込められていたをおき
そこから大小
まあ・・・・・
比較のできぬものに対角関係などあるはずもなく

そんな位相の本が明倫館書店にあったことを覚えています
もしなんも知らなくても
僕の場合は旧ソ連の束論の1ページ目とその位相の最初で知覚をし
それがなんなのか
だったんですけど
その本を持てなかったことは残念です
おそらく法のシステムが在ります
各国がどのようなシステムなのかがわかり
領域を知ることができるので

です
これはにほんごでもかけないでしょう

これは運用ではないので
ああわかりました
ここで

ですね

245:132人目の素数さん
19/04/17 06:44:12.88 nR7yV5eM.net
してみると
領域の査
は在るが
ここからどうのこうのは目的論で在り独立しています
というのもだいたいですけどね

強引ですが
領域 査
調

こんな風に書いてあってもわかればよい
これが技術ですから
すべて平和のためだとおもえば
まあ仕方がないかなともおもいます
重の問題については書いたので
書 重
論理で書いてもああそうなんだわかった
というだけであります
形式から始めろ
これで
函式は作れません
幻覚・妄想時に
創造物を見せろ
というのがあったのですが
まあ難しいですね
元気でね

246:132人目の素数さん
19/04/17 18:38:49.00 j25pwrGw.net
>>235
じゃあfω^2くらいになるんじゃない?

247:132人目の素数さん
19/04/17 19:16:50.50 bFYghqTq.net
巨大数は宗教でもある
しかしスポーツでもある
サッカーでも同じだろう
サッカーをスポーツと見る人もいれば、宗教ととらえる人もいる

248:132人目の素数さん
19/04/17 19:20:42.50 bFYghqTq.net
最初は巨大さを楽しみたかっただけかもしれない
しかし巨大さを崇め、巨大さをただひたすら求めるあまりに
そうしたらある日気が付いて 本当に自分には巨大さ以外がなくなってしまっていたんです

249:132人目の素数さん
19/04/19 05:57:43.34 YoTPgDhT.net
腸内細菌(善玉菌)を爆発的に増やす食べ物
1位キダチアロエ
2位ゴボウ
3位バナナ
4位玉ねぎ
5位にんにく
6位サツマイモ
10位リンゴ

250:名無し
19/04/19 19:54:36.48 iN40Bssf.net
有限約束ゲームがさっぱりわっからん

251:132人目の素数さん
19/04/19 23:01:51.10 BDxlrXs8.net
URLリンク(www.sciencedirect.com)
ω^ω未満の順序数をCoCで表現する
On = ∀A:P. ∀L:(A⇒A)⇒(A⇒A). ∀s:A⇒A. ∀z:A. A
0: On = λA L s z. z
1: On = λA L s z. s z
2: On = λA L s z. s (s z)
ω: On = λA L s z. L s z
ω+1: On = λA L s z. s (L s z)
ω2: On = λA L s z. L s (L s z)
ω^2: On = λA L s z. L (L s) z
ω^3+ω^2×2+ω×2+1 = s (L s (L s (L (L s) (L (L s) (L (L (L s)) z)))))

252:132人目の素数さん
19/04/19 23:23:14.77 BDxlrXs8.net
C_0(α,β) = β∪{0}
C_n+1(α,β) = { γ+δ, φ(ε,γ), φ(α,ζ) | γ,δ,ε,ζ ∈ C_n(α,β) ∧ ε < α ∧ ζ < β }
C(α,β) = { γ ∈ C_n(α,β) | n < ω }
φ(α,β) = min{ γ ∉ C(α, β) }
φ(Ω,0)=Г_0になるようにしたいが、どうやったらいいだろう・・・

253:名無し
19/04/20 12:19:40.06 H7jdOY7K.net
SKIコンビネータ―にRを加えSRKIコンビネータ―を作成
Rx,y,z=xy(xy)zとする
この時SK(RKI(K))ってどうなるんやろ

254:132人目の素数さん
19/04/20 16:26:34.02 T/7jGf88.net
R x y z = x y (x y) z
R x y = x y (x y)
R x = S x x
R = S S I
S K (R K I K) x = K x (R K I K x) = x
S K (R K I K) = I

255:名無し
19/04/20 18:34:46.85 H7jdOY7K.net
巨大数の歌 lyrics.NaNaSi
皆が小学生のころ
不可説不可説転を使っていた
   その不可説不可説転とはーー
しかし。
不可説不可説転の上は
いくらでも定義できる
たとえをいくつか挙げると
10^10^100とか3↑↑↑3とか
無限に作ることができる
日本の巨大数論は
「フィッシュ数」から始まった
FGHでF_ω^2+1(63)
そんなふぃっしゅ数は
バージョン7迄ある
それから巨大数論は
どんどん広がっていき
おこじょ数にBM1
ペアの算術の限界ε_0を
容易に超えるTREE(3)
Search and Make
巨大数を探索し
それから作って投稿する
唉 巨大数予
Making the large numbers
それこそが巨大数....zzz

256:132人目の素数さん
19/04/21 02:57:26.70 xwxS8pXw.net
2^x*3^y*(1+(1/2)^x+(1/3)^y) mod 6^2

6^2+3^2+2^2 mod 6^2 =7*7
6^3+3^3+2^3 mod 6^2 =5*7
6^4+3^4+2^4 mod 6^2 =5*5
6^5+3^5+2^5 mod 6^2 =23*1
6^6+3^6+2^6 mod 6^2 =1*1
6^7+3^7+2^7 mod 6^2 =1*11

6^7+3^7+2^7 mod 6^2 =1*13 ←6^7+3^7+2^7-36*46845=13

(1*2*3*5*7)^n*(1+1/2^n+1/3^n+1/5^n+1/7^n) mod (1*2*3*5*7)^2 はすべて7以上の素数の2乗もしくは素数になる

257:132人目の素数さん
19/04/21 03:05:28.39 xwxS8pXw.net
(1*2*3*5*7)^n*(1+1/2^n+1/3^n+1/5^n+1/7^n) mod 11^2はすべて非素数かつ2か3か5か7の素因数のみで構成される

258:名無し
19/04/21 07:41:11.04 8rcwske0.net
>>248
>>249
今日は家のリビングで、紅茶でも飲みながらペンギンの映像とか見た方がいいよ

259:名無し
19/04/21 08:59:44.16 8rcwske0.net
[a,b,c,...]をNaNaSi配列表記とする
231で定義した[a,b,c,...]_[d,e,f....]_....を一桁で書くと、
[a,b,c,...<1>d,e,f...<1>...]となる



260:次に、これを「平面」と呼び、平面を重ねる。これが「立体」である 次に立体を重ね.... 定義 n次元NaNaSi配列表記は、以下のように定義される。 全ての配列に入っている数を、<n-1>を<n-2>に置き換えた今の配列にする <n-1>を配列から削除する n次元、一辺がnで、すべての要素がnな配列を出力する関数をNo(n)とする No(63)をNaNaSi数v6とする(つかれた



261:132人目の素数さん
19/04/21 09:15:03.13 62fOS71t.net
部員数損壊

262:132人目の素数さん
19/04/21 09:38:06.31 EV9BxEv8.net
{α|cf(α)=Ω} = {Ω, Ω2, Ω3, ..., Ω^2, Ω^2+Ω, Ω^2+Ω2, ..., Ω^3, ..., Ω^4, ..., Ω^Ω, ...}
CNF_π = C^ω_π
 C^0_π = {0}
 C^α_π = {γ+δ | γ,δ ∈ C^β_π; β<α} (α≠0)
CNF_π = {0, 1}∪{α|cf(α)=Ω∧α<ε_(Ω+1)}
次にエプシロン数のようなものを定義したくなる
cf(ε_(Ω+1))=cf(Ω↑↑ω)=ω
Ω↑↑Ωを定義するには?
φ_π(0,0) = 1
φ_π(α,β) = {γ | γ∉C^π_π(α,β) ∧ cf(γ)=π} (α,β≠0)
 C^0_π(α,β) = {0}
 C^μ_π(α,β) = {γ+δ, φ_π(ε,γ), φ_π(α,ζ) | γ,δ,ε,η∈C^ν_π(α,β); ν<μ; ε<α; ζ<β} (μ≠0)
φ_Ω(1,0) = Ω↑↑Ω
VNF_π = C^ω_π
 C^0_π = {0}
 C^α_π = {γ+δ, φ_π(γ,δ) | γ,δ ∈ C^β_π; β<α} (α≠0)

263:132人目の素数さん
19/04/21 09:55:47.49 EV9BxEv8.net
あ、ミス C^Ω_Ω(0,1)=ωになってしまう
とりあえず修正
φ_π(0,0) = 1
φ_π(α,β) = max C^π_π(α,β) (α,β≠0)
 C^0_π(α,β) = {0}
 C^μ_π(α,β) = {γ+δ, φ_π(ε,γ), φ_π(α,ζ), sup C^ν_π(α,β) | γ,δ,ε,η∈C^ν_π(α,β); ν<μ; ε<α; ζ<β} (μ≠0)
これで一応C^Ω_Ω(0,1)=Ωになるはず
でもこれでも、φ_Ω(0,β)=Ω^βにしたいところが、φ_Ω(0,ω)=Ω^Ωになってしまうんだよなあ・・・
どうしたらいいだろうなあ

264:132人目の素数さん
19/04/21 11:55:46.11 EV9BxEv8.net
Cantor's Atticを見て勉強中
◆強極限: ℶ_λ (λは極限順序数) 例: ℶ_ωやℶ_(ω2)など
◆強到達不能: 非可算∧正則∧強極限
つまり、I番目のΩ不動点ということでよさそう
◆弱到達不能: 非可算∧正則∧極限

265:名無し
19/04/21 14:01:53.01 8rcwske0.net
待って、集合論、分かんない

266:132人目の素数さん
19/04/21 14:51:30.43 xwxS8pXw.net
((1*2*3*5)^n*(1+1/2^n+1/3^n+1/5^n)) mod ((1*2*3*5)) =1
nが1以上の整数のとき必ず余りが1になる

267:132人目の素数さん
19/04/21 14:59:05.76 xwxS8pXw.net
((2*3*5)^n*(1/2^n+1/3^n+1/5^n)) mod ((2*3*5)) =1
((7*3*5)^2n*(1/7^2n+1/3^2n+1/5^2n)) mod ((7*3*5)) =1
nが整数のとき必ず余りが1になる

268:132人目の素数さん
19/04/21 15:01:34.81 xwxS8pXw.net
((7*11*5)^3*(1/7^3+1/11^3+1/5^3)) mod ((7*3*5))=83
((7*11*5)^3*(1/7^3+1/11^3+1/5^3)) mod ((7*2*5))=13
((7*11*5)^3*(1/7^3+1/11^3+1/5^3)) mod ((2*5*3))

269:132人目の素数さん
19/04/21 20:21:36.89 kbUZc+8F.net
数列を並べてやる
(1)=1 (1,1)=2 (1,1,1)=3 (1,2)=ω
・・・原始数列と同じ・・・
(1,2,4)=ε_0
(1,2,4,2,3,5)=ε_0^2
(1,2,4,2,4)=ε_1
(1,2,4,3,4,6)=ε_{ε_0}
(1,2,4,3,5)=φ(2,0)
(1,2,4,3,5,2,4)=φ(1,φ(2,0)+1)
(1,2,4,3,5,2,4,3,5)=φ(2,1)
(1,2,4,3,5,3,5)=φ(3,0)
(1,2,4,3,5,4,6)=ψ(Ω^Ω)
(1,2,4,4)=ψ(ψ{Ω_2}(0))
(1,2,4,4,4)=ψ(ψ_{Ω_3}(0))
(1,2,4,5)=ψ(Ω_ω)
(1,2,4,6)=ψ(Ω_Ω)
(1,2,4,6,5,7,9)=ψ(Ω_{Ω_Ω})
(1,2,4,6,6)=ψ(ψ_I(0))
(1,2,4,6,8,8)=ψ(ψ_{χ(2,0)}(0))
(1,2,4,6,…)=ψ(ψ_{χ(ω,0)}(0))

270:名無し
19/04/22 17:28:30.54 3s3iTk8r.net
>>251
これが案外でかいように見えて
F_ω^2+ωくらいなんだよな
ω^ωに達するにはどうすればいいだろうか
うーむ

271:132人目の素数さん
19/04/22 21:09:44.65 aiXKQMNV.net
I―弱到達不能基数は、Ω_Ω_Ω_…とΩを何個つなげても辿り着けない基数である。
それはIがオメガ不動点でもあることを意味する。
しかし、最初のオメガ不動点、ψ_I(0)=Ω_Ω_Ω_…はIではない。
なぜか?それは、Iが正則だからだ。Iは正則故に、最初のオメガ不動点―ψ_I(0)―でも、ω番目のオメガ不動点―ψ_I(ω)―でもない。それらの共終数はωであり、Iではない。
Iの共終数はIそれ自身である。つまり、Iは、1+1+1+…という列のI番目1×Iであり、ω+ω+ω+…という列のI番目ω×Iでもある。
さらに言えば、I番目のエプシロン数ε_Iでもあり、I番目の非可算順序数Ω_Iでもある。
Iは、Iに上界なあらゆる順序数列のI番目である。

272:132人目の素数さん
19/04/22 21:12:39.73 gj9hiD3D.net
>>262
それなんかおかしくね?w

273:名無し
19/04/23 06:30:12.12 0iN9rqH4.net
>>262
もう何が何だかw

274:132人目の素数さん
19/04/23 08:47:31.97 c63b1puS.net
オメガ不動点とかは初めて見たけど、言ってることは普通に共終数の話だな
キューネン「集合論」で言えば第一章

275:名無し
19/04/24 16:14:29.52 eecizwJu.net
F_φ(ε_0,0)ぐらいの関数作りてえな
どんな発想が必要だろうか

276:132人目の素数さん
19/04/24 19:41:39.30 39HkwwfY.net
参考
・ふぃっしゅ数バージョン5のm(n)変換
M_0:自然数として、M_n+1: M_n→M_nの写像、M_nの対角化がf[ε_0]の強さ
・ふぃっしゅ数バージョン6のm(m,n)変換
m(n)変換を2変数に拡張したもの、強さはf[φ(2,0)]
m(多変数)変換・・・φ(ω,0)
m(多重リスト)変換・・・φ(ε_0,0)くらい?
強くするには、単純に、構造の中に構造を埋め込んでいって複雑にするのが一番やりやすい方法だと思う

277:132人目の素数さん
19/04/24 20:09:20.82 39HkwwfY.net
ただ、構造を生かすには効率的にそれを強さにつなげる必要がある
急増加関数やハーディ階層は非常に効率的にやっていると思う
(1) H_0(n) = n
(2) H_α+1(n) = H_α(n+1)
(3) H_α(n) = H_α[n](n) (αが極限順序数のとき)
対して、緩増加関数は非常に効率が悪い(しかし、順序数そのものの強さを調べるには都合がいい)
(1) g_0(n) = 0
(2) g_α+1(n) = g_α(n)+1
(3) g_α(n) = g_α[n](n) (αが極限順序数のとき)
最も大きな違いは、それぞれの定義の(2)。
H_ω2(3)とg_ω2(3)をそれぞれ計算してみればわかるだろうが、ハーディーは計算した値を使って次の値を計算するのに対して、緩増加関数は中身の値はずっと変わらない
その結果、H_ε_0(n)の強さがf_ε_0(n)になるのに対し、g_ε_0(n)はたったのf_3(n)程度になる。

278:132人目の素数さん
19/04/24 20:20:04.24 39HkwwfY.net
とはいえ、ある程度以上巨大な順序数、例えばθ(ε_(Ω+1))とか、ではfとgの大きさは殆ど同じになるので、
ある程度以上巨大な関数f1とそこそこ巨大な関数f2を合成してもf1とほとんど変わらない現象が起きてしまうから、
順序数を使って巨大数を作るときは順序数以外は無視して良いと思う
つまり、何が言いたいかって言うと、サラダ数よりもシンプルに強力な定義をした方が強くなりやすいってばよ

279:名無し
19/04/25 19:12:26.79 /YchTRbC.net
ほう
多重リストm(n)変換でφ(ε_0,0)なのか
となるとφ(ζ_0,0)は難しそうだな

280:132人目の素数さん
19/04/26 20:52:53.25 RWx0fLA2.net
2^a*3^b*5


281:^c*(1/2^a+1/3^b+1/5^c) mod 2^a*3^b = X a,b,c,,N,Xは1以上の整数 2^a*3^b*5^c*(1/2^a+1/3^b+1/5^c)=N*2^a*3^b+X Nが2,3,5の素数のみで構成される際Xは必ず素数になる (2^2*3^4*5^5*(1/2^2+1/3^4+1/5^5)) mod (2^2*3^4) =269 (2^2*3^4*5^5*(1/2^2+1/3^4+1/5^5))=820*(2^2*3^4)+269



282:132人目の素数さん
19/04/26 21:02:13.12 RWx0fLA2.net
(2^2*3^2*5^5*(1/2^2+1/3^2+1/5^5)) mod (2^2*3^2) =17
(2^2*3^2*5^6*(1/2^2+1/3^2+1/5^6)) mod (2^2*3^2) =13
(2^2*3^2*5^7*(1/2^2+1/3^2+1/5^7)) mod (2^2*3^2) =29
(2^2*3^2*5^8*(1/2^2+1/3^2+1/5^8)) mod (2^2*3^2) =1
(2^2*3^2*5^9*(1/2^2+1/3^2+1/5^9)) mod (2^2*3^2) =9
(2^2*3^3*5^2*(1/2^2+1/3^3+1/5^2)) mod (2^2*3^3) =19
(2^2*3^3*5^4*(1/2^2+1/3^3+1/5^4)) mod (2^2*3^3) =43
(2^2*3^3*5^5*(1/2^2+1/3^3+1/5^5)) mod (2^2*3^3) =107
(2^2*3^3*5^6*(1/2^2+1/3^3+1/5^6)) mod (2^2*3^3) =103
(2^2*3^3*5^7*(1/2^2+1/3^3+1/5^7)) mod (2^2*3^3) =83
(2^2*3^3*5^9*(1/2^2+1/3^3+1/5^9)) mod (2^2*3^3)=23
(2^2*3^3*5^10*(1/2^2+1/3^3+1/5^10)) mod (2^2*3^3) =7
(2^2*3^3*5^12*(1/2^2+1/3^3+1/5^12)) mod (2^2*3^3) =67
(2^2*3^3*5^13*(1/2^2+1/3^3+1/5^13)) mod (2^2*3^3) =11
(2^2*3^3*5^15*(1/2^2+1/3^3+1/5^15)) mod (2^2*3^3)=59
(2^2*3^3*5^16*(1/2^2+1/3^3+1/5^16)) mod (2^2*3^3) =79
(2^2*3^3*5^17*(1/2^2+1/3^3+1/5^17)) mod (2^2*3^3)=71
(2^2*3^3*5^18*(1/2^2+1/3^3+1/5^18)) mod (2^2*3^3)=31
(2^2*3^3*5^19*(1/2^2+1/3^3+1/5^19)) mod (2^2*3^3)=47
(2^2*3^3*5^20*(1/2^2+1/3^3+1/5^20)) mod (2^2*3^3)=19

283:132人目の素数さん
19/04/26 21:29:44.05 RWx0fLA2.net
(2^4*3^2*5^4*(1/2^4+1/3^2+1/5^4)) mod (2^4*3^2)=73
(2^4*3^2*5^6*(1/2^4+1/3^2+1/5^6)) mod (2^4*3^2)=97
(2^4*3^2*5^7*(1/2^4+1/3^2+1/5^7)) mod (2^4*3^2)=53
(2^4*3^2*5^9*(1/2^4+1/3^2+1/5^9)) mod (2^4*3^2)=29
(2^4*3^2*5^15*(1/2^4+1/3^2+1/5^15)) mod (2^4*3^2)=101
(2^4*3^3*5^2*(1/2^4+1/3^3+1/5^2)) mod (2^4*3^3)=211
(2^4*3^3*5^3*(1/2^4+1/3^3+1/5^3)) mod (2^4*3^3)=191
(2^4*3^3*5^4*7^2*(1/2^4+1/3^3+1/5^4+1/7^2)) mod (2^4*3^3)=139
(2^4*3^3*5^4*7^3*(1/2^4+1/3^3+1/5^4+1/7^3)) mod (2^4*3^3)=109
(2^4*3^3*5^4*7^4*(1/2^4+1/3^3+1/5^4+1/7^4)) mod (2^4*3^3)=331
(2^4*3^3*5^4*7^5*(1/2^4+1/3^3+1/5^4+1/7^5)) mod (2^4*3^3)=157
(2^8*3^3*5^4*7^5*11^2*13^3*(1/2^8+1/3^3+1/5^4+1/7^5+1/11^2+1/13^3)) mod (2^8*3^3)=1993

284:132人目の素数さん
19/04/26 23:39:20.63 rDZdMIAR.net
素数ツリーでTaranovsky's Cを表現
p[0] = 0
p[C(a,b)] = 3^p[a] * 2^p[b]
p[Ω_a] = 5^p[a]
例: URLリンク(pastebin.com)
とりあえずψ(ψ_I(0))まで

285:名無し
19/04/27 06:09:09.05 ChDMBQ5y.net
適当に作ったらふぃっしゅ数っぽくなった
L(x+1,f(n))=L(L(x,f^n(n)),f^n(n))
L(0,f(x))=f(n+1)
次に、L^a(x,f(n))を以下のように定義する。
L^a(x,f(n))=L^L^a-1(x,f^n(n))(x-1,f(n))
最後に、LL(x,f(n))を以下のように定義する。
LL(x,f(n))=LL^LL(x-1,f^n(n))^LL(x,f(n))(x-1,f(n))
LL^a(x,f(n))の定義はL^a(x,f(n))と同様だとすると、
LL^63(63,2^n)を三葉虫数とする。

286:132人目の素数さん
19/04/27 13:46:53.35 p/yzIrJh.net
巨大数研究wikiの弱コンパクト基数、「ZFCにWCCが存在という公理を加えたものは無矛盾だと推測されている」の出自が気になるな
弱到達不能基数ならまだ分かるが弱コンパクト基数はどうだろうと思う
wikipediaにあるカバル学派の話だろうか?

287:132人目の素数さん
19/04/27 14:09:54.93 8+pNmLqE.net
ω番目の到達不能奇数は存在しますか?
特異基数になってしまうような気がするんですが

288:名無し
19/04/27 15:52:20.50 ChDMBQ5y.net
とりあえずアッカーマン配列表記
Y=0個以上の1
X=0個以上の1以上の整数
a,b=1以上の整数
c,d=2以上の整数
A{Y,a}=a+(Yに含まれる1の数)
A{c,d}=従来のアッカーマン関数
A{X,b+1,0}=A{X,b,A{X,b}}
A{X,b+1,a+1}=A{X,A{X,b,a},b}
A{X,b+1,0,Y,a}=A{X,b,a+b,Y,a}
多変数アッカーマン70%,BEAF20%,普通のアッカーマン10%です。
ちゃんと定義できてるか不安...

289:名無し
19/04/27 18:27:54.61 ChDMBQ5y.net
計算を進めていったら、これA{c,Y}に対する処理が必要だ...
A{c,0,Y}=A{c-1,c-1,Y}

290:132人目の素数さん
19/04/28 09:17:07.25 a3oa95Dr.net
□■■■■■□□□□□■
□□■■■■□□□□■■
□□□■■■□□□■■■
□□□□■■□□■■■■
□□□□□■□■■■■■
■■■■■□■□□□□□
■■■■□□■■□□□□
■■■□□□■■■□□□
■■□□□□■■■■□□
■□□□□□■■■■■□

291:ψ
19/04/29 10:43:42.84 LMOy9qxj.net
バシクではない
(0) = 1
(0)(0) = 2
(0)(1) = (0)...(0)= ω
(0)(1)(0) = ω+1
(0)(1)(0)(1) = ω2
(0)(1)(1) = (0)(1)...(0)(1) = ω^2
(0)(1)(2) = (0)(1)...(1) = ω^ω
(0)(1)(2)(2) = (0)(1)(2)...(1)(2) = ω^ω^2
(0)(1)(2)(3) = (0)(1)(2)...(2) = ω^ω^ω
(0)(2) = (0)(1)(2)(3)... = ε_0
(0)(2)(1) = (0)(2)...(0)(2) = ε_0 ω
(0)(2)(1)(2) = (0)(2)(1)...(1) = ε_0 ω^ω
(0)(2)(1)(3) = (0)(2)(1)(2)(3)... = ε_0^2
(0)(2)(1)(3)(2)(4) = (0)(2)(1)(3)(2)(3)(4)... = ε_0^ε_0
(0)(2)(


292:2) = (0)(2)(1)(3)(2)(4)(3)(5)... = ε_1 (0)(2)(3) = (0)(2)(2)... = ε_ω (0)(2)(3)(5) = (0)(2)(3)(4)(5)... = ε_ε_0 (0)(2)(3)(5)(6)(8) = ε_ε_ε_0 (0)(2)(4) = φ_2(0) (0)(2)(4)(2)(4) = φ_2(1) (0)(2)(4)(3) = φ_2(ω) (0)(2)(4)(3)(5)(7) = φ_2(φ_2(0)) (0)(2)(4)(3)(5)(7)(6)(8)(10) = φ_2(φ_2(φ_2(0))) (0)(2)(4)(4) = φ_3(0) (0)(2)(4)(5) = φ_ω(0) (0)(2)(4)(5)(7)(9) = φ_ε_0(0) (0)(2)(4)(5)(7)(9)(10)(12)(14) = φ_{φ_ε_0(0)}(0) (0)(2)(4)(6) = ϑ(0) (0)(2)(4)(6)(8) = ϑ(Ω) (0)(2)(4)(6)(8)(10) = ϑ(Ω^Ω) (0)(3) = ϑ(ε_(Ω+1)) up to ϑ(Ω_ω)



293:132人目の素数さん
19/04/29 13:19:44.41 rt0W9AzI.net
>>281
巨大数探索スレッド14の085と一緒やな

294:132人目の素数さん
19/04/29 14:26:16.06 5xcqbWhj.net
>>281をpDAN風にすると>>260

295:名無し
19/04/29 14:42:45.06 MJR5MH7D.net
>>279
結局撤回。

296:132人目の素数さん
19/04/29 20:10:29.10 rt0W9AzI.net
>>269
fとgが同じ強さになるのはψ(Ω_ω)やで

297:132人目の素数さん
19/04/29 22:02:47.60 E7MQMqfS.net
113

298:132人目の素数さん
19/04/29 22:03:44.57 E7MQMqfS.net
115

299:132人目の素数さん
19/04/29 22:04:00.53 E7MQMqfS.net
117

300:名無し
19/04/30 13:19:09.99 /u+ptOiU.net
NaNaSi配列表記まとめ
3列NaNaSi配列表記
[a,b,c]=[[a,b,c-1],[a,b,c-1,c-1]
[a,b,1]=[[a,b],[a,b]]
[a,b]=By(a^2,b^2)
初出:186
近似(予想):F_ω^3(n)
n列NaNaSi配列表記
[a,b,c,d]=[[a,b,c],[a,b,c],d]
[a,b,c,d,e]=[[a,b,c,d],[a,b,c,d],e]
以下同様
近似(予想):F_ω^3+ω(n)
初出:204
配列A[]B表記
a[]b=[a,a,a,a...](aがb個)
a[[]]b=a[](a[[]]b-1)
a[[[]]]b=a[[]](a[[[]]]b-1)
以下同様
近似(予想):F_ω^4(n)
初出:上に同じく
下付きNaNaSi配列表記
[a,b,c]_2=[[a,b,c],[a,b,c],[a,b,c]]
[a,b,c]_3=[[[a,b,c],[a,b,c],[a,b,c]],[[a,b,c],[a,b,c],[a,b,c]],[[a,b,c],[a,b,c],[a,b,c]]]
以降同様に拡張できる
[a,b,c]_[a,b,c]_[a,b,c]...と言う風に続く場合、下から計算する。(原文ママ)
近似(予想)F_ω^4(n)
初出:231
多次元NaNaSi配列表記
[a,b,c,...]_[d,e,f....]_....を一桁で書くと、
[a,b,c,...<1>d,e,f...<1>...]となる
次に、これを「平面」と呼び、平面を重ねる。これが「立体」である
次に立体を重ね....
定義
全ての配列に入っている数を、<n-1>を<n-2>に置き換えた今の配列にする
<n-1>を配列から削除する
近似(予想):F_ω^5(n)
初出:251
近似が違ったら教えて下さい

301:132人目の素数さん
19/04/30 13:43:37.62 9Uq9YreO.net
今日巨大数のイベントあるらしいけど
何か日本の巨大数界隈はほぼTwitterの内輪コンテンツになってしまったな

302:132人目の素数さん
19/04/30 18:49:13.59 bYFsLNDz.net
有限個の自然数の組から「関数から関数への写像」への写像Fを以下のように定める.ただしfとは関数である.
n:非負整数
X:0個以上の非負整数
Z:0個以上の0 として,
F(X,Z)=F(X)
F(0)f(x)=f^x(x)
F(n+1,X)f(x)=(F(n,X)^x)f(x)
F(Z,0,n+1,X)f(x)=(F(Z,x,n,X))f(x)
ここで,f(x)=x+1として関数gを
g(x)=F((x個の0),1)f(x)
とする.
多分ε_0くらい行ったか?もうちょい拡張する予定

303:132人目の素数さん
19/04/30 22:33:08.73 5fhCxIyI.net
ニッチなジャンルだし、あちこちのコミュニティでほそぼそとやっていてたまに交流があるくらいだ

304:132人目の素数さん
19/04/30 22:42:07.18 j0PiUy2x.net
>>290
どこでやると良いと思いますか?

305:132人目の素数さん
19/04/30 22:55:16.39 j0PiUy2x.net
URLリンク(docs.google.com)

306:132人目の素数さん
19/04/30 22:56:25.72 j0PiUy2x.net
こんなのがあった

307:132人目の素数さん
19/05/01 01:15:36.08 sGhSZTE9.net
>>277
ω番目の到達不能基数の存在はω番目の到達不能基数の存在と同値な公理を認めれば存在する。
ω番目の到達不能基数はI,I_2,I_3,...の極限ではないから特異基数ではない、と言いたいところだけど、文脈によっては極限とすることもあるみたいだし、それだと特異基数になる

308:132人目の素数さん
19/05/01 12:56:48.56 yzCUhE4P.net
>>296
thx

309:名無し
19/05/01 16:30:05.55 2VYB16UD.net
10日ぶりのNaNaSi数シリーズ
今回は頑張る
No_m(n)=No_n(No(m-1))(m>n)
No_m(n)=No_No_m-1(m)(m)(n-1)(n>m)
No_1(n)=No(n)
No_No_No_...(Noがa回)...(b)(b)(b)(b)をNo_a,1(b)とする
んでaにNo_a,1を入れるのがa,2
a,2を入れるのがa,3
以下同様
No_64,1(64)をNaNaSi数v7をする
誰か評価お願いします
気になったとこがあったら突っ込んでください。

310:名無し
19/05/01 18:43:09.97 2VYB16UD.net
修正
No_a,1(n)=No_No_a-1,1(a)^n(n)

311:132人目の素数さん
19/05/02 00:14:40.45 QPnrjx3P.net
5^a×3^b×2^c×(1/5^a+1/3^b+1/2^c) mod 2^c×3^b = N
5^a×3^b×2^c×(1/5^a+1/3^b+1/2^c) = X×2^c×3^b +N
X-1を素因数分解しそこから2と3と5の素因数をのぞいた素数しかNは素数をもたない
X-1が2.3.5の素因数のみで構成される際はNは必ず素数
X-1が2.3.5以外の素因数を持つ際はその素因数でNを割り切れなくなるまでわることでNを素数に変えられる

312:名無し
19/05/02 12:49:57.33 PaV3tI5I.net
3^3&10って急増化関数でどうなるんだろう

313:132人目の素数さん
19/05/05 06:23:51.44 +TbpXZrs.net
■志村 五郎氏(しむら・ごろう=数学者、米プリンストン大名誉教授)
プリンストン大の発表によると、5月3日死去、89歳
楕円関数の性質に関する「谷山・志村予想」を提唱
350年余り数学者を悩ませてきた「フェルマーの最終定理」の
証明につながった
東京大助教授、大阪大教授を経て1964~99年にプリンストン大
教授を務めた(ワシントン=共同)

314:名無し
19/05/05 09:52:30.72 OiS95NxD.net
今回はガチ
通常のヒドラに、アッカーマンノードを追加する
アッカーマンノードは先っちょにA(n,m)が付いている
アッカーマンノードのルール
ここで、ターン数をnとする
ノードを木から削除する
もし親が根なら、何も変わらない。
それ以外は、cをbの親としノードをcにn個取り付ける
アッカーマンノードが付いている枝を、nノード分伸ばす
アッカーマン関数の計算を進める
先っちょに数字(数字をpとする)が付いてる場合、通常のノードをp個束ねたものと見なす
長さαの木、先っちょにA(β,γ)が付く関数をAckHyd(α,β,γ)とする
ポリプ数=AckHyd(10,10,10)

315:132人目の素数さん
19/05/06 09:45:41.84 fl5wNSQE.net
m=0
B(n, 0) = n
B(z, y, #, 0) = B(z(y, _, ..., _), #, 0)
n=0
B(#, 0, m+1) = B(#, B(#, 1, 0), m)
m,n>0
B(n+1, m+1) = B(B(n, m+1), m)
B(g, n+1, m+1) = B(B(g, _, m), B(g, n, m+1), m)
B(h, g, n+1, m+1) = B(B(h, _, _, m), B(h, g, _, m), B(h, g, n, m+1), m)
B(z, #, g, n+1, m+1) = B(B(z, _, ..., _, _, m), ..., B(#, g, _, m), B(z, #, g, n, m+1), m)
s(x) = x+1
B(s, n, 0) = B(s(n), 0) = s(n) = n+1
B(f, 0, 1) = B(f, 1, 0) = f(1)
B(f, n+1, 1) = B(B(f, _, 0), B(f, n, 1), 0) = f(B(f, n, 1))
B(f, n, 1) = f^n+1(1)
B(s, n, 1) = n+2
B(f, 0, 2) = B(f, 1, 1) = f^2(1)
B(f, n+1, 2) = B(B(f, _, 1), B(s, n, 2), 1) = B(f^_+1(1), B(f, n, 2), 1) = [f^_+1(1)]^B(f,n,2)+1(1)
B(s, n+1, 2) = 2*B(s, n, 2)+3
B(s, n, 2) = 2^(n+3)-3
予測 B(s, n, n) ~ f_ω(n)

316:132人目の素数さん
19/05/06 10:11:00.97 fl5wNSQE.net
B1(g, m, 1) = B(g, _, m)
B1(h, m, 2) = B(h, _, _, m)
B(f_α, n, m) ~ f_α+m(n)
B(B(_, _, m), f_α, n, 0) ~ f_α+m(n)
B(B(_, _, 1), f_α, n, 1) ~ f_α+2(B(B(_, _, 0), f_α, n, 1)) ~ f_α+3(n)
あんまおおきくならんな
使うべきは関数より数だったか

317:名無し
19/05/06 12:41:23.11 pUZjL3Hx.net
誰か303の評価をお願いします

318:132人目の素数さん
19/05/06 16:46:40.52 DUphundC.net
(2*3*5*7*11*13*17*(1/2+1/3+1/5+1/7+1/11+1/13+1/17)) mod (2*3**5*7*11*13*17) =205657

319:132人目の素数さん
19/05/06 16:49:08.02 DUphundC.net
(2*3*5*7*11*13*17*19*(1/2+1/3+1/5+1/7+1/11+1/13+1/17


320:+1/19)) mod (2*3*5*7*11*13*17*19) =4417993 (2*3*5*7*11*13*17*19*・・・*(n番目の素数)*(1/2+1/3+1/5+1/7+1/11+1/13+1/17+1/19+・・・+1/(n番目の素数))) mod (2*3*5*7*11*13*17*19*・・・*n番目の素数) は必ず素数になる



321:132人目の素数さん
19/05/06 17:50:15.80 fl5wNSQE.net
>>306
わかりやすく図解してくれ

322:名無し
19/05/06 18:01:37.79 pUZjL3Hx.net
こういうことだ
URLリンク(o.8ch.net)

323:名無し
19/05/06 18:03:47.80 pUZjL3Hx.net
あ、まちがえた
右から3番目、本来ならあれを2伸ばすべきだったし、2段目にも通常のノードを2個つけないといけなかった

324:132人目の素数さん
19/05/10 23:05:03.26 VrOrc3tB.net
(2*3*5*7^a*11^b*13^c*(1/(7^a*11^b*13^c)+1/(2*3*5))) mod (2*3*5) = y
a,b,cに任意の正の整数を入力する際yは必ず素数になる

(2*3*5*7^2*11^3*13^4*(1/(7^2*11^3*13^4)+1/(2*3*5))) mod (2*3*5) =29
(2*3*5*7^2*11^3*13^5*(1/(7^2*11^3*13^5)+1/(2*3*5))) mod (2*3*5) =17
(2*3*5*7^2*11^3*13^3*(1/(7^2*11^3*13^3)+1/(2*3*5))) mod (2*3*5) =23

325:132人目の素数さん
19/05/11 20:15:27.90 BDiCZTyq.net
(2*3*5*7^a*11^b*13^c*(1/(7^a*11^b*13^c)+1/(2*3*5))) mod (2*3*5) =y
(2*3*5*7^a*11^b*13^c*(1/(7^a*11^b*13^c)+1/(2*3*5)))=x*(2*3*5)+y
((1-x)*(2*3*5)+(7^a*11^b*13^c))=y
(1-x)が7,11,13を因数に持たないyは30より小さく2,3,5,7,11,13を因数に持たない値になるため必ず素数になる
(2*3*5*7*11^a*13^b*17^c*(1/(11^a*13^b*17^c)+1/(2*3*5*7))) mod (2*3*5*7)
(2*3*5*7*11^a*13^b*17^c*(1/(11^a*13^b*17^c)+1/(2*3*5*7)))=x*(2*3*5*7)+y
((1-x)*(2*3*5*7)+(11^a*13^b*17^c))=y
(1-x)が11,13,17を因数に持たないyは210より小さく2,3,5,7,11,13,17を因数に持たない値になるため必ず素数になる
(2*3*5*7*11^2*13^2*17^2*(1/(11^2*13^2*17^2)+1/(2*3*5*7))) mod (2*3*5*7) =151

326:名無し
19/05/12 06:43:37.76 aZW2nsB5.net
即興で巨大数作った
m,n:1以上の整数
█=1個以上の0
█s=█に含まれる0の数
□=1個以上の1以上の整数
(█)=1
(█,n)=n+█s
(█,□,m,n)=(█,□,(█,□,m-1,n-1),n-1)
(█,□,m,█)=(█,□,m-1,█s個のm-1)
(█,□,█,□)=(█,□,█s,□)
(□,m,n)=(□,m-1,(□,m,n-1))
最初が1以上で配列の途中に█が含まれる場合、その█を█sに置き換える
Y(n,m)=(n,n,n,..m個..n,n,n)
Y(57,57)を「57は巨大数」とする

327:名無し
19/05/12 08:34:49.88 aZW2nsB5.net
訂正
最初の値をpとする
p=0,█と□が入り混じっている場合、一番最後の█を█sに置き換える
(□,m,n)=(□,m-1,(□,m,n-1))

(□,m,n)=(□,(□,m,n-1),n-1)

328:名無し
19/05/12 19:14:36.37 aZW2nsB5.net
アッこれ計算終わらない気がしてきた

329:132人目の素数さん
19/05/13 15:29:11.91 5MNdJcTV.net
最近、日本巨大数協会が出来たり、東方巨大数3が始まったりと活発だね

330:132人目の素数さん
19/05/13 17:14:34.56 DkbocJIk.net
Y数列というのが興味深い

331:名無し
19/05/14 06:48:16.45 VZJjVMDK.net
自称ω+99
J(1,x)=x!
J(x,1)=x^(x!)
J(x,y)=J(x!,J(x-1,y!))
JJ(x,y)=J(J(J(J(x,y),J(x,y)),J(x,y)),J(x,y))(x+y! times J)
JJJ(x,y)=nest JJ
JJJJ(x,y)=nest JJJ
Jx(x)(y,z)=JJJJJJJ(y,z)(x times J)
J^(x)(y,z)=JxJxJxJx(y,z)(y,z)(y,z)(y,z)(x times J
J^^(x)(y,z)=nest J^(x)
以下同様、JをJJなどに置き換えることもできる
J↑^(x)(y,z)=J^^^^^^^^^(y,z)(x times ^)
J↑^(100)(100,100)=Googfactrhdrorial

332:132人目の素数さん
19/05/14 14:18:51.33 JukLNtG0.net
>>318
それ、どこにあった?

333:132人目の素数さん
19/05/14 14:25:00.11 jZLjpuGv.net
>>317
でもTwitterアカウントがないと参加すら出来ないようになってきたな
匿名の2ちゃんねるが主流だった頃は良かった

334:132人目の素数さん
19/05/16 00:13:38.60 sXcKhKuB.net
>>321
匿名だと関係ない話題とかいっぱい流れてきたり、誰の発言か分からなくて追えなかったりするだろ
議論がその都度ぶつ切りになるし
ただTwitterアカウント作るだけだろ?

335:132人目の素数さん
19/05/16 07:59:31.64 d6o1KsBe.net
>>322
その方が自由で好きだな
最近は一つの同人サークルが幅を効かせているけど、その内の一人は「計算不可能巨大数は巨大数と認めてない」と言ってるし、
今のところそのサークルが主宰するイベントでは認めてるようだがそういう意識が根底にあるっていうのはずっと付きまとう
それにTwitterで巨大数を投稿して「何だこれ滅茶苦茶じゃん」などと叩かれでもしたら投稿へのモチベーションは格段に下がるが、匿名で叩かれれば次の日から何事もなかったかのように議論に参加できる
そういう意味で匿名の方が好きだったなと

336:132人目の素数さん
19/05/16 09:01:31.16 Md5EQn56.net
参加のハードルが低いといえば聞こえはいいが、自分の発言に責任を取りたくないと言ってるのと大して変わらないんじゃないか
ただの趣味が負担になるほど気負いたくないというのはわかるが

337:名無し
19/05/16 16:22:46.98 QaMS+EJs.net
phpBBやDjangoBBを使用したサイトなどもログイン制だな
xkcdはその一例だ

338:132人目の素数さん
19/05/16 18:34:24.61 OIiPBTBN.net
>>260
(1,2)=ω
(1,2,3)=ω^ω
(1,2,3,4)=ω^ω^ω
(1,2,3,4,5)=ω^ω^ω^ω
(1,2,3,4,5,6)=ω^ω^ω^ω^ω
(1,2,4)=ε_0
(1,2,4,2,3,5)=ε_0^2
(1,2,4,2,3,5,3,4,6)=ε_0^ε_0
(1,2,4,2,3,5,3,4,6,4,5,7)=ε_0^ε_0^ε_0
(1,2,4,2,3,5,3,4,6,4,5,7,5,6,8)=ε_0^ε_0^ε_0^ε_0
(1,2,4)=ε_0
(1,2,4,2,4)=ε_1
(1,2,4,2,4,2,4)=ε_2
(1,2,4,2,4,2,4,2,4)=ε_3
(1,2,4,2,4,2,4,2,4,2,4)=ε_4
(1,2,4)=ε_0
(1,2,4,3,4,6)=ε_{ε_0}
(1,2,4,3,4,6,5,6,8)=ε_{ε_{ε_0}}
(1,2,4,3,4,6,5,6,8,7,8,10)=ε_{ε_{ε_{ε_0}}}
(1,2,4,3,4,6,5,6,8,7,8,10,9,10,12)=ε_{ε_{ε_{ε_{ε_0}}}}
(1,2,4)=ε_0
(1,2,4,3,5)=φ(2,0)
(1,2,4,3,5,3,5)=φ(3,0)
(1,2,4,3,5,3,5,3,5)=φ(4,0)
(1,2,4,3,5,3,5,3,5,3,5)=φ(5,0)
(1,2,4)=ε_0
(1,2,4,4)=ψ(ψ{Ω_2}(0))
(1,2,4,4,4)=ψ(ψ{Ω_3}(0))
(1,2,4,4,4,4)=ψ(ψ{Ω_4}(0))
(1,2,4,4,4,4,4)=ψ(ψ{Ω_5}(0))
(1)=1
(1,2)=ω
(1,2,4)=ε_0
(1,2,4,8)= ←ここを教えて?

339:132人目の素数さん
19/05/16 18:52:29.41 h+oD1ako.net
見る限り、前の数+1ならψ_0、+2ならψ_1のようなので
(1,2,4,8) = ψ_0(ψ_1(ψ_1(0))) = ψ_0(Ω^2) = φ(2,0)

340:132人目の素数さん
19/05/16 19:07:22.46 h+oD1ako.net
あと, (1,2,4,3,5)はψ_0(ψ_1(0)+ψ_0(ψ_1(0)))=ψ_0(Ω+ε_0)=ε_0^2ではないか?

341:132人目の素数さん
19/05/16 21:41:58.57 h+oD1ako.net
ああ違う、φ(2,0)は(1,2,4,6)だ
(1,2,4,8)がもしψ_0(ψ_1(Ω_3))=ψ_0(ψ_1(ψ_2(Ω_3)))だとすると、?

342:132人目の素数さん
19/05/16 23:01:00.01 4UfqzNCz.net
(2*3*5*7*11*13*17*19*23*29*(1/(11*13*17*19*23*29)+1/(2*3*5*7))) mod (2*3*5*7)=13
(2*3*5*7*11*13*17*19*23*29*31*(1/(11*13*17*19*23*29*31)+1/(2*3*5*7))) mod (2*3*5*7)=193
(2*3*5*7*11*13*17*19*23*29*31*37*(1/(11*13*17*19*23*29*31*37)+1/(2*3*5*7))) mod (2*3*5*7)=1
(2*3*5*7*11*13*17*19*23*29*31*37*41*(1/(11*13*17*19*23*29*31*37*41)+1/(2*3*5*7))) mod (2*3*5*7)=41
(2*3*5*7*11*13*17*19*23*29*31*37*41*43*(1/(11*13*17*19*23*29*31*37*41*43)+1/(2*3*5*7))) mod (2*3*5*7)=83

343:132人目の素数さん
19/05/17 11:31:56.25 eqgn+U0R.net
>>326
私が以前作ったTY数列という数列と挙動が同じようなので、
(1,2,4,5)=ψ(Ω_ω)
(1,2,4,5,7)=ψ(Ω_Ω)
(1,2,4,6)=ψ(I)
(1,2,4,7)=ψ(Ω_{M+1})
(1,2,4,8)=ψ(M_ω)
だと思います。

344:132人目の素数さん
19/05/17 12:20:07.18 WdZ1WFmg.net
>>331
ありがとうです
TY数列というのですか。でかいですね
この数列はこう続いていくんですよね
(1,2)=(1,1,1,1,1,1,...)
(1,3)=(1,2,4,8,16,32,...)
(1,4)=(1,3,9,27,81,243,...)
(1,5)=(1,4,16,64,256,1024,...)
(1,6)=(...)
(1,7)=(...)
...
(1,ω)が気になります

345:132人目の素数さん
19/05/17 16:28:48.96 f5ILB+Rc.net
>>332
TY数列は(1,3)以降があいまいなので、極限を(今のところ)(1,2,4,8,16...)
としています。
今開催されている東方巨大数3に私が投降した「Y数列」は、(1,3)でちょうどバシク行列と大きさが一致し、さらに極限が(1,ω)なので大きさが期待できます。
よかったら見てみてください。

346:132人目の素数さん
19/05/17 16:33:37.41 f5ILB+Rc.net
>>332
あ、(1,3)や(1,4)の展開はそれであっています。
一般にY数列では、(1,n+1)は(1,n,n^2,n^3,n^4...)と展開されます。

347:132人目の素数さん
19/05/17 18:39:06.25 WdZ1WFmg.net
>>333
東方巨大数3のエントリー一覧みつけました
Y数列はまだ解析されていないんですね
期待�


348:オてまってます



349:132人目の素数さん
19/05/18 07:22:38.10 xpxUR7ZU.net
(2*3*5*7*11*13*17*19*23*29*31*37*41*43*(1/(13*17*19*23*29*31*37*41*43)+1/(2*3*5*7*11))) mod (2*3*5*7*11)=1153
(2*3*5*7*11*13*17*19*23*29*31*37*41*43*47*(1/(13*17*19*23*29*31*37*41*43*47)+1/(2*3*5*7*11))) mod (2*3*5*7*11)=1061
2*3*5*7*11より小さく47までの素因数をもたないため
仮にyが非素数だとすると最小でもy=53*53になる必要がある 2310よりおおきくなるひつようがあるのでyは必ず素数になる

350:名無し
19/05/18 08:51:43.51 r7na8OE9.net
(1,2,4,3,5,3,5,3,5,3,5...)=φ(ω,0)
(1,2,4,5,8,9,16,17,32,33...)=?
↑を教えてください

351:132人目の素数さん
19/05/18 13:31:36.93 XnJGAc4T.net
>>337
そのような数列は出てこないと思います。
(1,2,4,6)=(1,2,4,5,7,8,10,11,13,14,16,...)なので

352:名無し
19/05/18 14:05:06.93 r7na8OE9.net
>>338
thx

353:260
19/05/19 15:36:15.33 ttITBgqr.net
>>326
(1)(2)(4)(6)(8)・・・
までしか考えてないし、定義もなく感覚でやってるだけでした

354:名無し
19/05/19 15:56:40.52 zxBXw5jR.net
>>326
ϑ(ε_Ω+1)やϑ(φ(Ω,1))の表し方が気になるな
質問ばかりですまんが教えてくれ

355:132人目の素数さん
19/05/20 12:10:11.19 lHwUJWWp.net
>>333
TY数列の展開は、次のように定義するのがいいのかも
TY数列の(1,n+1)の展開 (Y2はTY数列を示す仮シンボル)
Y2(1,2)=Y2(1,1,1,1,1,...)=Y2(1↑↑0,1↑↑1,1↑↑2,1↑↑3,1↑↑4,...)
Y2(1,3)=Y2(1,2,4,16,65536,...)=Y2(2↑↑0,2↑↑1,2↑↑2,2↑↑3,2↑↑4,...)
Y2(1,4)=Y2(1,3,27,3^27,3^3^27,...)=Y2(3↑↑0,3↑↑1,3↑↑2,3↑↑3,3↑↑4,...)
Y2(1,5)=Y2(1,4,256,4^256,4^4^256...)=Y2(4↑↑0,4↑↑1,4↑↑2,4↑↑3,4↑↑4,...)
Y2(1,6)=Y2(1,5,3125,5^3125,5^5^3125,...)=Y2(5↑↑0,5↑↑1,5↑↑2,5↑↑3,5↑↑4,...)
......
Y数列の(1,n+1)の展開 (Y1はY数列を示す仮シンボル)
Y1(1,2)=Y1(1,1,1,1,1,...)=Y1(1↑0,1↑1,1↑2,1↑3,1↑4,...)
Y1(1,3)=Y1(1,2,4,8,16,...)=Y1(2↑0,2↑1,2↑2,2↑3,2↑4,...)
Y1(1,4)=Y1(1,3,9,27,81,...)=Y1(3↑0,3↑1,3↑2,3↑3,3↑4,...)
Y1(1,5)=Y1(1,4,16,64,256,...)=Y1(4↑0,4↑1,4↑2,4↑3,4↑4,...)
Y1(1,6)=Y1(1,5,25,125,625,...)=Y1(5↑0,5↑1,5↑2,5↑3,5↑4,...)
......
ハイパー原始数列の(1,n+1)の展開 (Y0はハイパー原始数列を示す仮シンボル)
Y0(0,1)=Y0(0,0,0,0,0,...)=Y0(0×0,0×1,0×2,0×3,0×4,...)
Y0(0,2)=Y0(0,1,2,3,4,...)=Y0(1×0,1×1,1×2,1×3,1×4,...)
Y0(0,3)=Y0(0,2,4,6,8,...)=Y0(2×0,2×1,2×2,2×3,2×4,...)
Y0(0,4)=Y0(0,3,6,9,12,...)=Y0(3×0,3×1,3×2,3×3,3×4,...)
Y0(0,5)=Y0(0,4,8,12,16,...)=Y0(4×0,4×1,4×2,4×3,4×4,...)
......

356:132人目の素数さん
19/05/20 12:14:26.37 lHwUJWWp.net
>>340
同じく感覚でやっています
>>341
自分にはわからないです
TY数列の作者さんに期待

357:名無し
19/05/20 15:41:18.61 TORmUV7F.net
(1,2,4,3,6)=φ(ω,0)
(1,2,4,3,7)=Γ_0?

358:132人目の素数さん
19/05/20 17:02:22.93 1FbbObiB.net
>>341
前者はUNOCFでψ(Ω_2)と大きさが一致するので、(1,2,4,4)だと思います
後者はちょっと分かりませんね。。
>>342
面白いと思います。組み込めないか考えてみる
>>344
φ(ω,0)=(1,2,4,3,5,4)
Γ_0=(1,2,4,3,5,4,6)
だと思います。

359:名無し
19/05/20 17:29:44.72 TORmUV7F.net
TY数列の(a,b,c,...)のaの値をa>1とかにしたらめっちゃ強くなりそう
ただ障害がある
定義がかなり複雑

360:132人目の素数さん
19/05/20 17:33:20.68 jSYBU6nu.net
>>341
ϑ(φ(Ω,1))はUNOCFではψ(Ω_2^Ω)だったと思うので、TY(1,2,4,4,3,5,5,4,6)です。

361:名無し
19/05/20 19:32:28.45 TORmUV7F.net
UNOCFとTYって一対一対応できるのか

362:132人目の素数さん
19/05/21 01:19:42.81 3E3ldLHJ.net
へ~1次元配列なのにそんなに強いのか。
よくわからんが数字に多次元構造を埋め込んでる感じなのだろうか?

363:132人目の素数さん
19/05/21 13:51:50.69 jSTjZKSv.net
TY数列よりもY数列を知ってほしいので布教すると、
(1,2,3,4,5,...)=原始数列と同じε_0=(0,0)(1,1)
(1,2,3,...)の数列の階差数列は(1,1,1,...)なので、これを原始数列のように(1,2)に圧縮する
なので(0,0)(1,1)は階差に(1,2)�


364:烽ツ数列になるので、(1,2,4) 階差をとることを続けると、 (1,2,4)=(0,0)(1,1) (1,2,4,8)=(0,0,0)(1,1,1) (1,2,4,8,16)=(0,0,0,0)(1,1,1,1) (1,2,4,8,16,32)=(0,0,0,0,0)(1,1,1,1,1) この極限が(1,3)=(0)(1[1]1) ここからはTrancefinite Basic Matrix Systemとの比較になるが、 (1,3,7)=(0)(1[2]1) (1,3,7,11)=(0)(1[3]1) (1,3,7,12)=(0)(1[ω]1) (1,3,7,13)=(0)(1[Ω]1)=α→(0)(1[α]1)の不動点 ここまでは解析できてる Y(1,4)への道のりは長い。。



365:名無し
19/05/21 15:29:30.94 xae0e2RU.net
Y数列つええな
Y(1,4)がtbms を越えるとか

366:132人目の素数さん
19/05/21 23:29:06.01 3E3ldLHJ.net
Y(1,100)は定義できない可能性もあるの?

367:352
19/05/22 00:29:50.06 86CinBUk.net
ん、定義できるのは明らかなのかな?

368:132人目の素数さん
19/05/22 00:58:26.87 2H/3WKPG.net
>>352
定義できます。
例えば、(1,3)の階差は2ですが、この2を1の斜め右上、3の斜め左上に書いておきます。
すると、1と2で原始数列のような展開をすることが可能なので、(1,2)を展開した(1,1,...)を斜め右上方向に伸ばしていきます。
あとは階差に従って数列を補完すれば、ちょうど2のべき乗の列(1,2,4,8,...)が現れるという寸法です
(1,4)も同じように、階差の3を1の右上に書いて、階差の(1,3)を(1,2,4,8,...)と展開して、数列を階差に従って補完すると(1,3,9,27...)となります。
このように、(1,n+1)は(1,n)の展開が分かればよく、また(1,2)は(1,1,1,...)と展開されるのは原始数列で説明がつくので、帰納的にすべてのn>1についての展開を定めることができます。
実際に手を動かして計算すると楽しいですよ~

369:名無し
19/05/22 07:20:17.29 I80+gxlR.net
TY数列の作者さんはハンネ付けた方がいいぞ

370:132人目の素数さん
19/05/22 13:10:44.12 2H/3WKPG.net
>>355
あんまり登録とかしたくないです。。
Twitterが主な活動場所なので、そちらにあげている定義等を見ていただければと思います

371:名無し
19/05/22 15:15:41.88 I80+gxlR.net
俺的レベルの分類(東巨よりも細かい)
0~ω Arrow
ω~ω^ω^ω nDimention
ω^ω^ω~ε_0 Cantor
ε_0~ζ_0 Hydric
ζ_0~Γ_0 SNZO
Γ_0~ϑ(ε_Ω+1) EXSAN
ϑ(ε_Ω+1)~TFBO Factorial EX
TFBO~C(C_1(Ω)^2) BEAF Limit
C(C_1(Ω)^2)~(0,0,0)(1,1,1)(2,2,1)(3,3,1) 5243Limit
(0,0,0)(1,1,1)(2,2,1)(3,3,1)~BMS Over UNOCF
BMS~(Y(1,n)[n] Level) YVarst
Y(1,n)[n] Level~Taranovsky C Limit C2ThN
Taranovsky C Limit~ω_1^CK A lonely ordinals
ω_1^CK~ Over Turing machine

372:132人目の素数さん
19/05/22 22:41:54.80 86CinBUk.net
ちなみにY数列の実際に動作するプログラムコードはありますか?

373:132人目の素数さん
19/05/23 20:34:30.52 h6674i0I.net
>>358
ありません。
私はプログラムに書き下す能力はありません。。
自分で書いた定義も一部数式じゃないところがあるので、修正中です。

374:132人目の素数さん
19/05/23 21:47:29.19 eaeUgTph.net
へー意外。
そんだけ本質的に複雑なことやってるってことかな?

375:名無し
19/05/24 06:38:39.81 fM3mMppT.net
ωxnSGAN(ただしnは1以上の整数)とかいう奴がチ―トすぎる件について
ωx3SGANでω^(ω^3+ω)を表すとどうなってしまうんだ....

376:132人目の素数さん
19/05/24 21:21:00.95 970AX9gt.net
TY数列らしきものをもう少し解析してみる。
OCFはRathjenのKPMのやつからΦを除いてφを1変数に制限したもの。
ψ_Ωはψと略する。
(1,2,4,7)=ψ(ψ_{χ(ω,0)}(0))
(1,2,4,7,2,4)=ψ(ψ_{χ(ω,0)}(0)+1)
(1,2,4,7,2,4,6,9)=ψ(ψ_{χ(ω,0)}(0)*2)
(1,2,4,7,2,4,6,9,4)=ψ(ψ_{χ(ω,0)}(0)↑↑ω)
(1,2,4,7,2,4,6,9,4,6,8,11)=ψ(ψ_{χ(ω,0)}(1))
(1,2,4,7,2,4,6,9,4,6,8,11,4,6,8,11)=ψ(ψ_{χ(ω,0)}(2))
(1,2,4,7,2,4,6,9,4,6,8,11,5,7,9,12)=ψ(ψ_{χ(ω,0)}(ψ_{χ(ω,0)}(0)))
(1,2,4,7,2,4,6,8,4,6,8,11,6,8,10,13)=ψ(ψ_{χ(ω,0)}(ψ_{χ(ω,0)}(1)))
(1,2,4,7,2,4,7)=ψ(χ(ω,0))

377:132人目の素数さん
19/05/24 21:49:19.04 970AX9gt.net
(1,2,4,7,2,4,7,2,4,7)=ψ(χ(ω,0)*2)
(1,2,4,7,4,6,8,11)=ψ(ψ_{χ(ω,1)}(0))
(1,2,4,7,4,6,8,11,4,6,8,11)=ψ(ψ_{χ(ω,1)}(1))
(1,2,4,7,4,6,8,11,5,7,9,12)=ψ(ψ_{χ(ω,1)}(ψ_{χ(ω,0)}(0)))
(1,2,4,7,4,6,8,11,6,8,11)=ψ(ψ_{χ(ω,1)}(χ(ω,0)))
(1,2,4,7,4,6,8,11,8,10,12,15)=ψ(ψ_{χ(ω,1)}(ψ_{χ(ω,1)}(0)))
(1,2,4,7,4,6,9)=ψ(χ(ω,1))
(1,2,4,7,4,6,9,4,6,9)=ψ(χ(ω,2))
(1,2,4,7,4,6,9,5,7,10)=ψ(χ(ω,χ(ω,0)))
(1,2,4,7,4,6,9,6,8,11)=ψ(χ(ω,χ(ω,1)))
(1,2,4,7,4,7)=ψ(ψ_{χ(ω+1,0)}(0))

378:132人目の素数さん
19/05/24 23:14:28.03 3PIdbac2.net
もしかして多次元配列と一次元配列は計算ルール次第で相互に変換可能で本質的には等価な強さ?

379:名無し
19/05/25 06:18:31.78 5v2fQot0.net
4状態4記号のビジービーバーの値は10^10^7.3622145を超えていると思う
5状態3記号は[10^(100341+π^e)]を超えていると思う
ここで[n]はガウス記号

380:132人目の素数さん
19/05/25 10:18:43.14 ZjnQ3ISg.net
 
人殺しの殺人鬼の池田糞作の創価の公明が政治活動
キチガイの集まりの創価の公明が政治活動
キチガイカルトの創価の公明が政治活動

381:名無し
19/05/25 11:02:41.84 5v2fQot0.net
ライフゲームで巨大数
nセルで最も長寿なライフゲームのパターンをL(n)とする。
ここで、このパターンの大きさはn≧10のときn-2×n-1,n>25のとき2√n×2√n以下でなければならない(不正防止)
この時、L^10(100)を「マイクラ十周年Yeaaaaaah数」とする

382:132人目の素数さん
19/05/25 15:28:43.13 8xL+oQNX.net
rootからたどり着くまでのノード数とは別に高さを定義する。
(i)刈った枝の長さ(=高さの差分)が1の場合はヒドラゲームと同様
(ii)2以上の場合、より短い枝にたどり着くまで先祖を遡る。
(iii)その短い枝から伸びる木をコピーし、刈ったところから貼り付け、その貼り付けた木の刈った部分からまた貼り付け・・・というのをn回繰り返す。
この定義だと>>363は見直さないとな

383:132人目の素数さん
19/05/25 16:03:04.20 8xL+oQNX.net
>>368の定義もダメっぽい

384:名無し
19/05/26 13:30:25.34 3fdlKEeK.net
改行式順序数表記で
((0,1))=φ(φ(φ(ω,0),0),0)
(((0,1)))=φ(φ(φ(φ(ω,0),0),0),0)
(0,1)<1>(0,1)=Γ_0
((0,1)<1>(0,1))<1>(0,1)=Γ_1
(0,1)<1>[(0,1)+1]=Γ_ω
(0,1)<1>[(0,1)+2]=ここを教えて
ちなみに、ルールは(0,n)(n≧5)でφ(n-2,0),(1)でφ(ω,0),(0,1)でω

385:132人目の素数さん
19/05/26 14:28:03.90 Af1aLbd8.net
>>323
ひとつのサークルが幅を効かせてるからといってそれに合わせる義理はないし、
自分は自分で好きにすればいいと思うよ

386:132人目の素数さん
19/05/29 13:38:30.76 FA85QPaU.net
>>362
(1,2,4,6)と(1,2,4,7)=ψ(ψ_{χ(ω,0)}(0))の間はどのようになりますか?
UNOCFを使い解析したところ(1,2,4,7)=ψ(ε_{M+1})となりましたが。

387:132人目の素数さん
19/05/31 23:36:37.67 tbQBwpvW.net
TY数列の定義ってどこにあるの?

388:アバタ
19/06/01 22:35:14.71 4AW5SquJ.net
宣伝すみません・・。
あまり需要がないかもしれないけれど、巨大数専門の掲示板作ってみました。
URLリンク(googology.bbs.fc2.com)
スレ立て自由、匿名OKなので、よかったら気軽に書き込みにきてください♪

389:132人目の素数さん
19/06/01 22:51:03.86 rovsh52X.net
マジかよw
嫌いじゃないけど絶対維�


390:揩ナきないと思うwww



391:アバタ
19/06/01 22:57:06.45 4AW5SquJ.net
>>375
Fc2の無料掲示板なので維持費とかはかからないのですが、過疎る可能性は否めないですね・・。

392:アバタ
19/06/01 22:57:11.21 4AW5SquJ.net
>>375
Fc2の無料掲示板なので維持費とかはかからないのですが、過疎る可能性は否めないですね・・。

393:132人目の素数さん
19/06/02 13:00:52.98 9i2jiWyI.net
>>372
定義をいろいろ見直してみました。
(1,2,4,6)=ψ(ψ_I(0))
(1,2,4,6,6)=ψ(ψ_{χ(2,0)}(0))
(1,2,4,6,8)=ψ(ψ_{χ(M,0)}(0))=ψ(ψ_{χ(ψ_{χ(M,0)}(0),0)}(0))
(1,2,4,6,8,6,8)=ψ(ψ_{χ(M,0)}(1))ψ(ψ_{χ(ψ_{χ(M,0)}(1),0)}(1))
(1,2,4,6,8,8)=ψ(χ(M,0))
(1,2,4,6,8,8,6,8,8)=ψ(χ(M,0)*2)
(1,2,4,6,8,8,8)=ψ(χ(M,0)^2)
(1,2,4,6,8,10)=ψ(χ(M,0)^χ(M,0))
(1,2,4,7)=ψ(ε_{χ(M,0)+1})=ψ(ψ_{Ω_{χ(M,0)+1}}(0))
(1,2,4,7,4,7)=ψ(ψ_{Ω_{χ(M,0)+1}}(1))
(1,2,4,7,5,8)=ψ(ψ_{Ω_{χ(M,0)+1}}(χ(M,0)))
(1,2,4,7,6)=ψ(Ω_{χ(M,0)+1})
(1,2,4,7,6,8)=ψ(Ω_{χ(M,0)*2})

394:132人目の素数さん
19/06/02 13:02:05.55 9i2jiWyI.net
>>378 訂正
(1,2,4,6,8,6,8)=ψ(ψ_{χ(M,0)}(1))=ψ(ψ_{χ(ψ_{χ(M,0)}(1),0)}(1))

395:132人目の素数さん
19/06/02 13:18:02.33 9i2jiWyI.net
定義を見直してみた(定義があるとは言ってない)
(1,2,4,7,6,9)=ψ(Ω_{Ω_{χ(M,0)+1}})
(1,2,4,7,7)=ψ(ψ_{χ(1,χ(M,0)+1)}(0))
(1,2,4,7,7,2,4,7,7)=ψ(ψ_{χ(1,χ(M,0)+1)}(1))
(1,2,4,7,7,3,5,8,8)=ψ(χ(1,χ(M,0)+1))
(1,2,4,7,7,4,7,7)=ψ(ψ_{χ(1,χ(M,0)+2)}(0))
(1,2,4,7,7,7)=ψ(ψ_{χ(2,χ(M,0)+1)}(0))
(1,2,4,7,9,12)=ψ(ψ_{χ(M,1)}(0))=ψ(ψ_{χ(ψ_{χ(M,1)}(0),0)}(χ(M,1)))

396:132人目の素数さん
19/06/03 22:59:12.08 hjTiygHv.net
>>380 途中からたぶん間違えてる
(1,2,4,7,7,2,4,7,7)=ψ(ψ_{χ(1,χ(M,0)+1)}(0)+ψ_{χ_M(0)}(ψ_{χ(1,χ(M,0)+1)}(0)))
(1,2,4,7,7,3,5,8,8)=ψ(ψ_{χ(1,χ(M,0)+1)}(0)+ψ_{χ_M(0)}(ψ_{χ(1,χ(M,0)+1)}(0))^2)
(1,2,4,7,7,4,7,7)=ψ(ψ_{χ(1,χ(M,0)+1)}(1))
(1,2,4,7,7,7)=ψ(ψ_{χ(1,χ(M,0)+2)}(0))
(1,2,4,7,9,12)=ψ(χ(1,Ω_{χ(M,0)+1}))
(1,2,4,7,10)=ψ(ψ_{χ(2,χ(M,0)+1)}(0))
(1,2,4,7,11)=ψ(ε_{χ(M,1)+1})
(1,2,4,8)=ψ(χ(M,ω))
(1,3)=ψ(ψ_{χ(M+1,0)}(0))

397:132人目の素数さん
19/06/04 17:40:00.31 LwXpxtU+.net
急増加関数の考え方ってこれであってる?
F_0(1)=2
F_0(2)=3
F_0(3)=4
......
F_0(n)=n+1
F_1(1)=F_0(1)
F_1(2)=F_0(F_0(2))
F_1(3)=F_0(F_0(F_0(3)))
......
F_1(n)=F_0^n(n)
F_2(1)=F_1(1)
F_2(2)=F_1(F_1(2))
F_2(3)=F_1(F_1(F_1(3)))
......
F_2(n)=F_1^n(n)
F_{m+1}(1)=F_m(1)
F_{m+1}(2)=F_m(F_m(2))
F_{m+1}(3)=F_m(F_m(F_m(3)))
......
F_{m+1}(n)=F_m^n(n)
F_ω(1)=F_1(1)
F_ω(2)=F_2(F_2(2))
F_ω(3)=F_3(F_3(F_3(3)))
.....
F_ω(n)=F_ω[n]^n(n)
 ω=(1,2,3,4,...)
F_{ω+1}(1)=F_ω(1)
F_{ω+1}(2)=F_ω(F_ω(2))
F_{ω+1}(3)=F_ω(F_ω(F_ω(3)))
......
F_{ω+1}(n)=F_ω^n(n)
F_{ω+2}(1)=F_{ω+1}(1)
F_{ω+2}(2)=F_{ω+1}(F_{ω+1}(2))
F_{ω+2}(3)=F_{ω+1}(F_{ω+1}(F_{ω+1}(3)))
......
F_{ω+2}(n)=F_{ω+1}^n(n)
F_{ω+m+1}(1)=F_{ω+m}(1)
F_{ω+m+1}(2)=F_{ω+m}(F_{ω+m}(2))
F_{ω+m+1}(3)=F_{ω+m}(F_{ω+m}(F_{ω+m}(3)))
......
F_{ω+m+1}(n)=F_{ω+m}^n(n)

398:132人目の素数さん
19/06/04 17:40:37.72 LwXpxtU+.net
F_{ω×2}(1)=F_ω(1)
F_{ω×2}(2)=F_{ω+1}(F_{ω+1}(2))
F_{ω×2}(3)=F_{ω+2}(F_{ω+2}(F_{ω+2}(3)))
......
F_{ω×2}(n)=F_{ω×2}[n]^n(n)
 {ω×2}=(ω,ω+1,ω+2,ω+3,...)
F_{ω^2}(1)=F_ω(1)
F_{ω^2}(2)=F_{ω×2}(F_{ω×2}(2))
F_{ω^2}(3)=F_{ω×3}(F_{ω×3}(F_{ω×3}(3)))
......
F_{ω^2}(n)=F_{ω^2}[n]^n(n)
 ω^2=(ω,ω×2,ω×3,ω×4,...)
F_{ω^ω}(1)=F_ω(1)
F_{ω^ω}(2)=F_{ω^2}(F_{ω^2}(2))
F_{ω^ω}(3)=F_{ω^3}(F_{ω^3}(F_{ω^3}(3)))
......
F_{ω^ω}(n)=F_{ω^ω}[n]^n(n)
 ω^ω=(ω,ω^2,ω^3,ω^4,...)
F_{ε_0}(1)=F_ω(1)
F_{ε_0}(2)=F_{ω^ω}(F_{ω^ω}(2))
F_{ε_0}(3)=F_{ω^ω^ω}(F_{ω^ω^ω}(F_{ω^ω^ω}(3)))
......
F_{ε_0}(n)=F_{ε_0}[n]^n(n)
 ε_0=(ω,ω^ω,ω^ω^ω,ω^ω^ω^ω,...)

399:132人目の素数さん
19/06/04 21:17:48.67 mVuY9Ydx.net
URLリンク(imgur.com)

400:132人目の素数さん
19/06/04 22:03:04.78 ijK+f2AD.net
bad root探索のアイディアがいくつかあって、それぞれで解析結果が変わってくる。最終的に同じ強さに収束するかもしれんが。
TYの具体的な定義がわからないのでここらでやめておく。

401:132人目の素数さん
19/06/05 20:38:24.96 u+ZXOV6Q.net
>>382
ワイナー階層で考えればだいたいそうだろうが、微妙にずれてないか
F_ω(3)=F_{ω[3]}(3)=F_3(3)=F_2(F_2(F_2(3)))
0から数えるか1から数えるかでも微妙にずれる

402:132人目の素数さん
19/06/05 21:40:43.07 LvwDSWBR.net
Ψ(Ω_ω)やΨ((Ω_ω)2)の基本列ってどんなんだ?

403:132人目の素数さん
19/06/07 17:51:33.86 JnjE+atC.net
>>386
サンク
ずれているのか

404:132人目の素数さん
19/06/10 13:51:11.59 Kmpu8C+Z.net
>>387
ψ(Ω_ω)の基本列はψ(1),ψ(Ω),ψ(Ω_2),ψ(Ω_3),...
ψ((Ω_ω)×2)はψ(Ω_ω),ψ(Ω_ω+Ω),ψ(Ω_ω+Ω_2),ψ(Ω_ω+Ω_3),...
かな

405:132人目の素数さん
19/06/10 22:19:31.89 1T7cSePD.net
>>389
サンキュー 順序数崩壊関数がだいたいわかったぞ

406:132人目の素数さん
19/06/10 22:49:50.00 Po0b+o2F.net
ω_1^CKの基本列ってビジービーバーみたいに神様ならわかるものなの?
それとも0除算のように神様でも無理なの?

407:132人目の素数さん
19/06/11 00:05:36.09 dwr1vhjp.net
ブーフホルツのΨ関数で
Ψ(Ω_(Ω_1+Ψ(Ω_Ψ(Ω_(...)))))=Ψ(Ω_(Ω_1+Ω_1))?

408:名無し
19/06/11 06:34:14.04 MvXHKXX4.net
>>391
自明な基本列は存在しない。
ただ自明でない基本列ならある

409:132人目の素数さん
19/06/11 10:01:27.67 5v1X22nJ.net
巨大数 探索 ×
巨大数 創造 〇
グラハム数以上は意味がない。そのグラハム数ですら証明されているわけではない。
本当に意味があるのはリーマン予想で使われた数まで。

410:132人目の素数さん
19/06/11 15:05:20.16 Goy6em9W.net
自然数の存在だって証明されたわけじゃない。
だから有限体をつかうべき

411:132人目の素数さん
19/06/11 20:18:50.32 cNv4DqiG.net
自然数の存在が証明されてないってどういうこっちゃ?
無限公理を仮定しないのか?

412:132人目の素数さん
19/06/11 20:41:08.85 F3cOUXGv.net
円周率を11進法で計算していたコンピューターが
1857万桁のところで異変を感知し、その部分を画面に表示し始めた
その表示は0と1のみしか登場せず、ある一定の区間ごとにに折り返され、
0と1によってある図形が浮かび上がった…
0000000011111100000000
0000011110000111100000
0001110000000000111000
0011000000000000001100
0110000000000000000110
1000000000000000000001
1000000000000000000001
0110000000000000000110
0011000000000000001100
0001110000000000111000
0000011110000111100000
0000000011111100000000

413:132人目の素数さん
19/06/11 22:35:19.24 cNv4DqiG.net
嘘松

414:名無し
19/06/12 16:30:03.93 mwOFFS3T.net
>>397
嘘くせ

415:132人目の素数さん
19/06/12 20:02:45.44 L6js9Spu.net
>>392
α↦Ψ(Ω_(Ω_1+Ψ(Ω_Ψ(Ω_(α)))))
という意味?

416:132人目の素数さん
19/06/13 03:11:04.56 Vk2CZjGZ.net
ふぃっしゅさん、数セミデビューおめでとうございます

417:名無し
19/06/13 06:45:09.12 pEuvZS5O.net
ローダー数ってF_(0)(1[1]1) (99)を超える可能性ってあるのか?

418:132人目の素数さん
19/06/13 17:19:11.08 QomKoYkT.net
>>402
ないね

419:132人目の素数さん
19/06/21 00:27:30.41 D7JzqYiI.net
そういや指数には指数法則があるけどテトレーションにも似たような法則ある?

420:名無し
19/06/21 06:06:56.40 ulkLsUlX.net
ϑ(ε_Ω+1)くらいの関数を作りたい
何かコツはありますか?

421:132人目の素数さん
19/06/23 14:45:36.95 0jhrNr7w.net
数学セミナーの2019年7月号(6月発売)の特集が
おおきな数


422:132人目の素数さん
19/06/23 22:09:58.32 hD0i3UBC.net
■有限単純群モンスター
モンスターとは、およそ8.08×10^53個,正確には
2^46・3^20・5^9・7^6・11^2・13^3・17・19・23・29・31・41・47・59・71=
808017424794512875886459904961710757005754368000000000個の
元からなる巨大な群である
ちなみにアボガドロ定数はおよそ6.02 ×10^23である
モンスターは豊かな構造をもつ興味深い研究対象である

423:132人目の素数さん
19/06/29 16:33:42.26 DHiuKlHq.net
巨大数探索スレッド15
ふうL@Fu_L12345654321
学コン1傑いただき


424:ました! とても嬉しいです! https://pbs.twimg.com/media/D-IuUuqVUAALnAB.jpg https://twitter.com/Fu_L12345654321/status/1144528199654633477 (deleted an unsolicited ad)



425:132人目の素数さん
19/07/04 00:30:56.86 WjmhsYjy.net
3100
ふうL@Fu_L12345654321
学コン1傑いただきました!
とても嬉しいです!
URLリンク(pbs.twimg.com)
URLリンク(twitter.com)
(deleted an unsolicited ad)

426:132人目の素数さん
19/07/06 13:50:55.39 lIVLa4Dc.net
TYのやり方はあまり強くならないみたいだな

427:132人目の素数さん
19/07/07 14:43:57.52 RocDeBiE.net
>>410
そんなに大きくないのか?

428:132人目の素数さん
19/07/09 15:24:37.89 y6c3XUBa.net
数セミ7月号見て寿司虚空編買って来た
うるか可愛い

URLリンク(comic.pixiv.net)
これの12番の右ページ上から2番目(単行本では204ページ上から2番目)
変な表情してるけど髪の描き方で可愛らしさを表現してるのは大したもんだな

429:132人目の素数さん
19/07/13 01:00:02.78 SoQUJFoa.net
5.3 x 10 ^5をフリーザ数と名付ける

430:132人目の素数さん
19/07/15 16:10:09.75 39OpuCYo.net
TYの定義ってかんせいしたのか?

431:132人目の素数さん
19/07/20 11:03:35.79 bSAoQnjE.net
0345
ふうL@Fu_L12345654321
学コン1傑いただきました!
とても嬉しいです!
https://pbs.twimg.com/media/D-IuUuqVUAALnAB.jpg
https://twitter.com/Fu_L12345654321/status/1144528199654633477
(deleted an unsolicited ad)

432:132人目の素数さん
19/07/21 03:45:21.44 B3GDjpGF.net
>>405
バッハマン・ハワード順序数相当の関数で、
膨張配列表記(強配列表記のバージョンのひとつ)というものがあるから
それを参考にすると良いと思う

433:132人目の素数さん
19/08/10 19:03:31.40 JxK8q2NL.net
ここの趣旨とは少しずれるかもしれませんが、ベントレー数、TREE(3)のように
「趣旨がわかりやすく」
「さわりを聞いたら大したことなさそうな」
「実は巨大数」
っての、他に何かありますか?(ベントレー数はだまし討ちの感がありますが…)

434:132人目の素数さん
19/08/10 21:38:39.78 ueucJjyv.net
>>417
組み合わせ爆発のやばさを教えてくれるお姉さん的な

435:132人目の素数さん
19/08/10 21:47:45.46 H8rSIqiX.net
フカシギの数え方だっけか

436:132人目の素数さん
19/08/11 14:05:01.84 csft5cxk.net
>417
可融数ってのがあるらしいよ

437:132人目の素数さん
19/08/12 09:35:39.19 uYZrNs/s.net
コラッツ予想の最初の反例とかめちゃくちゃでかいよ

438:132人目の素数さん
19/08/15 19:36:02.82 AXL568nA.net
コラッツ予想は真だよ。
今年中に俺が証明する。

439:132人目の素数さん
19/08/26 15:41:52.28 YhZ4lay5.net
>>342 興味深い

440:132人目の素数さん
19/09/01 10:18:56.29 kj4KKw7k.net
数論・論理・意味論 その原型と展開: 知の巨人たちの軌跡をたどる
736ページ東京大学出版会 ¥15,984
数学の本スレで挙がってた本だが、
目次を読む限り計算不可能巨大数の勉強に良さそうだからここでオススメしておく

441:132人目の素数さん
19/09/01 11:12:26.86 6OLKvQxa.net
無駄に高いな
巨大数


442:関連だけ知りたいって人には重すぎる1冊っぽい?



443:132人目の素数さん
19/09/01 12:03:55.90 mGPMgSJM.net
計算不可能巨大数だけ知ろうと思っても結局重い道を進むことになる
理解するだけで大変だからな
値段の高さは数学の本スレでも話題になってたが

444:132人目の素数さん
19/09/01 12:11:47.43 mGPMgSJM.net
むしろ一冊読めばラヨ数が(目次を見る限りおそらく)理解できるだけで敷居が大分下がる
大学図書館に縁のある人とかは借りて読んでみては

445:132人目の素数さん
19/09/01 15:26:27.10 cMQkxG6Z.net
ラヨ数は定義をどう解釈するかで変わってくるからなあ
platonist universeで解釈するのが多数派みたいだけど

446:132人目の素数さん
19/09/07 22:04:24.38 3cCzxiyW.net
囲碁やオセロみたいななんたらゲームでお互い最善を尽くしたときの一局とか、
定義は簡単だけど変化が複雑で証明が難しい一例だな。これでもせいぜい指数関数レベルだけど

447:132人目の素数さん
19/09/08 18:13:11.31 TL1GSgYN.net
二人零和有限確定完全情報ゲーム

448:132人目の素数さん
19/09/08 20:42:16.26 Rd3Ay5+t.net
ランダム実数選出ゲームで基礎論って言いかえられるんじゃなかったっけ?

449:132人目の素数さん
19/09/08 21:23:52.57 PCsQ6Ked.net
>>430
いつも思うけど長くて覚えられん

450:132人目の素数さん
19/09/10 20:48:42.21 uVROwPVU.net
>>432
アッカーマン関数の定義丸暗記するより楽やろ

451:132人目の素数さん
19/09/19 18:44:11.07 j+RUhbsj.net
TYの定義考えるなら(強さ的に)Yの定義を考えたほうがいいだろうし、みんなYの定義を探してる

452:132人目の素数さん
19/09/19 18:49:56.85 j+RUhbsj.net
先に展開の計算結果があって、後から定義を考える逆グーゴロジー

453:132人目の素数さん
19/09/19 21:21:52.92 cfN75kwg.net
展開の計算結果があるならそれがそのまま定義に採用できるのでは?
外延的定義というか?

454:132人目の素数さん
19/09/20 09:16:08.55 olbQxDEP.net
本当は計算結果が無限にあるはずだけど実際には有限個しか示すことができないから、
有限個からほかの計算結果を推理して内包的な定義を研究するという作業

455:132人目の素数さん
19/09/20 13:39:10.46 KyAOfC1j.net
3915
かずきち@dy_dt_dt_dx 8月28日
学コン8月号Sコース1等賞1位とれました!
マジで嬉しいです!
来月からも理系に負けず頑張りたいと思います!
URLリンク(twitter.com)
(deleted an unsolicited ad)

456:132人目の素数さん
19/09/26 03:08:59.35 exvNnjtl.net
Sierpinskiの“Cardinal and Ordinal Numbers”について質問です。
第1版と第2版とで内容はどの様に違っているのでしょうか?
(ページ数に関しては487pp.と491pp.なので4ページしか増えていないようなのですが)
御存知でしたら教えて頂けると助かります。宜しくお願い致します。

457:132人目の素数さん
19/10/09 17:30:33.15 u3k2dUuN.net
ωを拡張して大きな順序数をωと括弧と数字だけで表現できるようにしてみた
ω[]=1+1+1+1+...
ω[]×2=ω[]+(1+1+1+1+...)=ω[]+ω[]
ω[]^2=ω[]×(1+1+1+1+...)=ω[]+ω[]+ω[]+ω[]+...=ω[]×ω[]
ω[]^ω[]=ω[]^(1+1+1+1+...)=ω[]×ω[]×ω[]×ω[]×...
ω[0]=ω[]^ω[]^ω[]^ω[]^...
ω[1]=ω[0]^ω[0]^ω[0]^ω[0]^...
ω[ω[]]=ω[1+1+1+1+...]
ω[ω[0]]=ω[ω[]^ω[]^ω[]^ω[]^...]
ω[ω[1]]=ω[ω[0]^ω[0]^ω[0]^ω[0]^...]
ω[ω[ω[]]]=ω[ω[1+1+1+1+...]]
ω[ω[ω[0]]]=ω[ω[ω[]^ω[]^ω[]^ω[]^...]]
ω[0,0]=ω[ω[ω[ω[...ω[0]...]]]]
ω[0,1]=ω[0,0]^ω[0,0]^ω[0,0]^ω[0,0]^...
ω[0,ω[]]=ω[0,1+1+1+1+...]
ω[0,ω[0]]=ω[0,ω[]^ω[]^ω[]^ω[]^...]
ω[0,ω[0,0]]=ω[0,ω[ω[ω[ω[...ω[0]...]]]]


458:] ω[0,ω[0,1]]=ω[0,ω[0,0]^ω[0,0]^ω[0,0]^ω[0,0]^...] ω[0,ω[0,ω[]]]=ω[0,ω[0,1+1+1+1+...]] ω[0,ω[0,ω[0]]]=ω[0,ω[0,ω[]^ω[]^ω[]^ω[]^...]] ω[0,ω[0,ω[0,0]]]=ω[0,ω[0,ω[ω[ω[ω[...ω[0]...]]]]]]] ω[1,0]=ω[0,ω[0,ω[0,ω[0,...ω[0,0]...]]]] ω[ω[],0]=ω[1+1+1+1+...,0] ω[ω[0],0]=ω[ω[]^ω[]^ω[]^ω[]^...,0] ω[ω[0,0],0]=ω[ω[ω[ω[ω[...ω[0]...]]]],0] ω[ω[1,0],0]=ω[ω[0,ω[0,ω[0,ω[0,...ω[0,0]...]]]],0] ω[ω[ω[],0],0]=ω[ω[1+1+1+1+...,0],0] ω[ω[ω[0],0],0]=ω[ω[ω[]^ω[]^ω[]^ω[]^...,0],0] ω[ω[ω[0,0],0],0]=ω[ω[ω[ω[ω[ω[...ω[0]...]]]],0],0] ω[0,0,0]=ω[ω[ω[ω[...ω[0,0]...,0],0],0],0] ω[][]=ω[0,0,0,0,...]



459:132人目の素数さん
19/10/09 17:31:14.19 u3k2dUuN.net
ちなみに括弧はブーフホルツのヒドラを使っている
ω[][0]=ω[][]^ω[][]^ω[][]^ω[][]^...
ω[][0,0]=ω[][ω[][ω[][ω[][...ω[][0]...]]]]
ω[][0,0,0]=ω[][ω[][ω[][ω[][...ω[][0,0]...,0],0],0],0]
ω[0][]=ω[][0,0,0,0,...]
ω[0,0][]=ω[ω[ω[ω[...ω[0][]...][]][]][]][]
ω[0,0,0][]=ω[ω[ω[ω[...ω[0,0][]...,0][],0][],0][],0][]
ω[][][]=ω[0,0,0,0,...][]
ω[[]]=ω[][][][]...
ω[[0]]=ω[[]]^ω[[]]^ω[[]]^ω[[]]^...
ω[[0,0]]=ω[[ω[[ω[[ω[[...ω[[0]]...]]]]]]]]
ω[[]][]=ω[[0,0,0,0,...]]
ω[[]][[]]=ω[[]][][][][]...
ω[[][]]=ω[[]][[]][[]][[]]...
ω[[][][]]=ω[[][]][[][]][[][]][[][]]...
ω[[[]]]=ω[[][][][]...]
ω[[[]][]]=ω[[[]]][][][][]...
ω[[[]][[]]]=ω[[[]][][][][]...]
ω[[[][]]]=ω[[[]][[]][[]][[]]...]
ω[[[[]]]]=ω[[[][][][]...]]
ω[{}]=ω[[[[...[]...]]]]
ω[{}][{}]=ω[{}][[[[...[]...]]]]
ω[{}[]]=ω[{}][{}][{}][{}]...
ω[{}[[]]]=ω[{}[][][][]...]
ω[{}[{}]]=ω[{}[[[[...[]...]]]]]
ω[{}[{}[]]]=ω[{}[{}][{}][{}][{}]...]
ω[{}[{}[[]]]]=ω[{}[{}[][][][]...]]
ω[{}[{}[{}]]]=ω[{}[{}[[[[...[]...]]]]]]
ω[{}{}]=ω[{}[{}[{}[{}...[{}]...]]]]
ω[{[]}]=ω[{}{}{}{}...]

460:132人目の素数さん
19/10/09 19:51:01.58 jmRJzVNG.net
ブーフホルツのヒドラのカッコの構造って感覚的には理解できるけど、やさしい言葉で説明しようとすると難しすぎる

461:132人目の素数さん
19/10/09 21:21:03.44 l3k6FhV+.net
ノーマルのヒドラは理解できたけどブーフホルツはまだ理解できてない。
ベクレミシェフも理解できてない。
ブーフホルツの前にベクレミシェフを理解するのが先かもしれない。

462:132人目の素数さん
19/10/09 22:27:28.87 ztpA8u4T.net
数字を一切使わないところが最高にクール
まじ憧れる

463:132人目の素数さん
19/10/10 03:42:53.53 UXBlm+wW.net
>>441
ω[0,0,...]=ω[][]=φ(ω,0)
ω[][][]...=ω[[]]=φ(ω^2,0)
までは解析できた
そこから
ω[[]][]=ω[[0,0,0,0,...]]
ここら辺の動きが分からず頓挫

464:132人目の素数さん
19/10/10 03:45:03.34 UXBlm+wW.net
>>443
ベクレミシェフは大きさもε_0だしとっかかりやすいかも
手を動かすと割と分かると思う


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch