19/02/14 15:14:34.92 qQ2MSV+Q.net
>>811
>”独立”の定義は、積で定義されますから
(参考:確率変数の独立性)
URLリンク(www.sguc.ac.jp)
統計学 補足文書 6.確率変数の独立性 山陽学園大学・山陽学園短期大学
P4
「3. 確率変数の独立性」
● 定義
(1) 試行T における確率変数X , Y について, X のとる値a とY のとる値b に対して,
P( X = a, Y = b) = P( X = a)P(Y = b)
が常に成立するとき, X とY は(互いに)独立であるという。
(2) 試行T におけるn 個の確率変数n X1 , X2 ,・・・ , Xn について,各 Xi のとる値 ai に対し
て,
P(X1=a1 ,X2=a2 ,・・・・・・ ,Xn=an )
= P(X1 = a1) P(X2 = a2),・・・・??, P(Xn = an)
が常に成立するとき, X1 , X2 ,・・・ , Xn は(互いに)独立であるという。
(引用終わり)
URLリンク(www.sguc.ac.jp)
統計学
URLリンク(www.sguc.ac.jp)
山陽学園大学・山陽学園短期大学