19/02/04 23:46:13.86 /k6m2Duw.net
つづき
これね、いいわ(^^
ガロアスレらしいよね、このテーマは!(^^;
e^(ix)=cos(x)+i*sin(x)
1/e^(ix)=cos(x)-i*sin(x)
だから、
奇素数pで、1のベキ根
ζp=e^(2πi/p)=cos(2π/p)+i*sin(2π)
ζp+1/ζp=2cos(2π/p)
ζp-1/ζp=2i*sin(2π/p)
Qの拡大体で、円分体 Q(ζp)として
cos(2π/p)∈ Q(ζp)
i*sin(2π/p)∈ Q(ζp)
さらに
cos(π/p)∈ Q(ζ2p)
i*sin(π/p)∈ Q(ζ2p)
円分体で、これが基本なんだよね
続きは、また後で(^^
つづく