20/07/28 03:59:30.82 sCseLeeR.net
よろしくお願いします。
うちの子が、テスト(うちの子にには分不相応の難しいところの問題)で、奇跡的に何とか答えに近づいて、
143/77(143ぶんの77)というところまで解いて、解答したらバツでした。
約分して13/7とするのが正解でした。
こういうの、頭のいい人は、どうやって「もっと約分できるはず」と判断するんでしょうか?
私の頭では「77ってのは11か7で割れそうじゃん。ためしに143を11か7で割ってみればいいんじゃね?」的な発想くらいしか
ありえません。(じっさい、11で割れましたが)
143なんて3桁だから「何かの数で割れるかもしれない」とは予感できるかもしれませんが、77というのは九九には出てこないのもあって
できの悪い小学生にとっては「77と143に公約数があるはず」とは思いつかないし、ましてやその公約数なんて見いだせないんですが。
こういうの、要領よく判断する方法ってあるんでしょうか?
それともやはり、数学的センスとかIQ高い的ひらめきとか、そういうアホには縁遠い直感的な世界の話しになるんでしょうか?
ぶっちゃけ、「143と77の公約数があるかどうか」は、法則化できない、ひらめきとしかいえない判断によるしかないんでしょうか?