19/02/02 21:18:49.27 0GFYmnUI.net
>>788
それ面白いわ(^^
(>>181+>>788)
<時枝ふしぎな戦略改良5(神様登場版)>
0)時枝記事の通り、R^N/~を実行して、全ての代表を選んでおきます
1)相手が、時枝の箱に数を入れる
2)神様は、問題の箱の数列同値類の代表をうまく選ぶ。決定番号d:=d(s)とします (d(s)は時枝記事ご参照)
3)神様は、私にお告げを使って、決定番号より大きな数で 「d+m+1 から先の箱を開けろ」と教えてくれます
4)私は、これで同値類を決め、代表の列を知ります。
5)神様は、またお告げで「区間[d,d+m]の箱の数を当ててみせるぞと言え」と教えてくれます
6)そして、これがずばり的中し、私は神になりました
7)さて、上記で確率計算などは、関係ないです。確率1です
単に、同値類とその代表よりなる決定番号を正確に推察できさえすれば良い
その推察方法が、神だろうが、100列だろうが、勘の推量だろうが、決定番号を正確に推察できさえすれば、確率無関係になります
お分かりのように、「神様が教えてくれる」は面白く書いただけで、
数学的には、決定番号dをきちんと正確に推定することさえできれば、”区間[d,d+m]の箱の数”が当たります
mは、いくらでも大きく取れます。m=100億でも1000億でも1京でも、どんどん当たりますよ
さて、これは数学的に正しいのでしょうか?
正しくないですよね~(^^;
まあ、要するに、
「時枝の根本には、
標準数学から外れた
「同値類の代表と、ある元との比較をして、代表からなにがしかの情報が得られる」という、とんでもない屁理屈を使っていると
だから、トンデモ理論が出来た」よと
なお、>>683-684を、ご参照。また>>727もご参照。
以上