19/02/02 19:40:09.68 0GFYmnUI.net
>>771 追加
さて、ちょっと思いついたので、下記を書いておく
Q(cos2π/p)とQ(sin2π/p)と問題で
sin2π/p=cos{2π/p-π/2}=cos{2π(4-p)}/4pであることを利用
↓
この類推で
原問のQ(cosπ/p)とQ(sinπ/p)では
sinπ/p=cos{2π/2p-π/2}=cos{2π(2-p)}/4pであることを利用
とでもして、
ζ4p^(2-p) + 1/ζ4p^(2-p)=2cos{2π(2-p)}/4p=2sinπ/p
なので
ζ4p^(2-p)k + 1/ζ4p^(2-p)k
を作って、
OG(sinπ/p)
を作るのでしょうか?
体論の期末試験(再現)の解答で
cos{π/p}∈Q(sin2π/p) は言えた(>>771)
なので、
OG(cosπ/p) ⊂ OG(sinπ/p)
でしょうか?
だからOG(sinπ/p)の元を調べて、
2sinπ/p = ζ4p^(2-p) + 1/ζ4p^(2-p)
は、OG(cosπ/p) の外だと言えればいい
どうでしょうかね?
あと、細かいところ詰めてないが、ここらでギブアップです
(もっとカンニングすれば、詰められそうなのだが (^^ )