19/02/02 12:15:01.52 0GFYmnUI.net
>>760
つづき
で
ζ4p^(4-p)+ζ4p^-(4-p)で、”sin2π/p=cos{2π(4-p)}/4p”を使っているのですね
で、{ζ4p^k+ζ4p^-k ? gcd(4p,k)=1,1?k?2p} 達の中に、
おそらく、ζp+ζp^(-1)=2cos2π/p が入っているってことですかね?
細かくトレースできていませんが(^^
これで、cos(2π/p)∈Q(sin(2π/p)は、言えたよと
あとさらに、
[Q(cos2π/p):Q]=[Q(2cos2πp):Q]=(p-1)/2と
[Q(sin2π/p):Q]=p-1と
の差で、[Q(sin2π/p):Q]の拡大次数が大きいと
だから、 Q(cos2πp)よりQ(sin2π/p)の方がえらいよと(^^
なので、Q(cos2πp)の中には、Q(sin2π/p)の元で含まれないものがある。
その一つに、sin(2π/p)があると言えれば良い
上記は、Q(cos2π/p)とQ(sin2π/p)との問題の解答ですが
では、原問のQ(cosπ/p)とQ(sinπ/p)とはどうか?
まあ、同じスジで、解答できそうですが、
原問の方が少しばかり難しそうですね(^^;
とりあえず、ここまで(^^