現代数学の系譜 工学物理雑談 古典ガロア理論も読む59at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む59 - 暇つぶし2ch819:現代数学の系譜 雑談 古典ガロア理論も読む
19/02/02 12:14:19.35 0GFYmnUI.net
>>42
折角書いてくれたのに、流れてしまいそうだから
ちょっと、分ったところまで書いておくね(^^
<原問>
問1 cos(π/n)∈Q(sin(π/n)) を示せ。
問2 sin(π/n)はQ(cos(π/n))には含まれないことを示せ。
カンニング(^^;
URLリンク(fjmttty.hatenablog.com)
数学雑記
2017-08-05
体論の期末試験(再現)
(抜粋)
問1
(1) Q(2cos2π/7)/QがGalois拡大であることを示し、そのGalois群を求めよ
(2) 2cos2π/7のQ上最小多項式を求めよ
問2 pを奇素数とする。
(1)Q(cos2π/p)/QがGalois拡大であることを示し、その拡大次数を求めよ。
(2)sin2π/p=cos{2π(4-p)}/4pであることを利用し、[Q(sin2π/p):Q]を求めよ。
(引用終り)
<問2解答引用>
(1) Q(cos2π/p)=Q(2cos2π/p)に注意すると、Galois拡大であることは問1と同様。
G:=Gal(Q(ζp)/Q)として、
OG(ζp+ζp^(-1))={ζp+ζp^(-1),・・・,ζp^(p-1)+ζp^-(p-1)}
={ζp+ζp^(-1),・・・,ζp^(p-1)/2+ζp^-(p-1)/2}
よって、[Q(cos2π/p):Q]=[Q(2cos2π/p):Q]=(p-1)/2
(2) OG(2sin2π/p)={ζ4p^(4-p)k+ζ4p^-(4-p)k?gcd(4p,k)=1}
gcd(4p,4-p)=1だから、
={ζ4p^k+ζ4p^-k ? gcd(4p,k)=1}
ζ4p^(4p-k)+ζ4p^-(4p-k)=ζ4p^k+ζ4p^-kだから
={ζ4p^k+ζ4p^-k ? gcd(4p,k)=1,1?k?2p}
1 <= k1 < k2 <= 2p のとき、cos2(k1)π/4p ≠ cos2(k2)π/4pだから、
[Q(sin2π/p):Q]
=[Q(2sin2π/p):Q]
=|OG(2sin2π/p)|
=p-1
(引用終り)
えーと、多分 OG(ζp+ζp^(-1))が、ガロア拡大体の記号でしょう
ζpは、いつもの式 x^p=1 の原始根なのでしょう
簡単に
ζp =cos2π/p + i sin2π/p とみて
ζp + 1/ζp =2cos2π/p (これオイラーの式 e^θ で、1/e^θ=e^-θ で、共役複素数になります)
で、ヒント、”sin2π/p =(cos{2π/p-π/2}) =cos{2π(4-p)}/4p” に注意してなんだけど
上記の解答のように、分母に4を誘導するのがキモですね
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch