面白い問題おしえて~な 29問目at MATH
面白い問題おしえて~な 29問目 - 暇つぶし2ch652:132人目の素数さん
19/07/29 20:25:28.22 YC4en7ro.net
>>611
40枚から4回で特定は可能。情報理論的には、(3^4-1)/2=40 だから可能と考えられるし、実際に、下に示すような方法で可能。
以後、次の記号を使うことにする。
不:重いかもしれないし、軽いかもしれないし、正しいかもしれないコイン
重:重いかもしれないし、正しいかもしれないコイン
軽:軽いかもしれないし、正しいかもしれないコイン
正:正しいコイン
一回目に、13枚ずつ載せればよい。すると、「重13軽13正14」または、「不14正26」に分かれる。
「重13軽13正14」は[重9軽5]と[正10重4]にして比較すればよい。すると、「重9正31」か「軽5重4正31」か「軽8正32」に分かれる。
(分岐は、天秤の結果が、「左が重い」、「右が重い」、「釣り合う」に対応。)
「不14正26」は、[正1不4]と[不5]にして比較すればよい。すると、「重4軽5正31」か「重5軽4正31」か「不5正35」に分かれる。
「重4軽5正31」は、[重2軽2]と[重1軽1正2]にして比較すればよい。すると、「重2軽1正37」か「軽2重1正37」か「重1軽2正37」に分かれる。以後略。
「不5正35」は、[正3]と[不3]にして比較すればよい。すると、「軽3正37」か「重3正37」か「不2正38」に分かれる。以後略
ちなみに、正しいコインが別枠で一枚有れば41枚、つまり「不41正1」から4回で可能。
[正1不13]と[不14]で比較すれば、「重13軽14正15」か「軽13重14正15」か「不14正28」に分かれます。以後略。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch